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FOREWORD 

Experimentation and Measurement was written by Dr. W. J. 
Youden, Applied Mathematics Division, National Bureau of 
Standards in 1961, and appeared as a VISTAS of SCIENCE book in 
1962. The VISTAS of SCIENCE series was developed and produced 
by the National Science Teachers’ Association. 
Nearly a quarter of a century after its publication, Experimentation 
and Measurement still enjoys wide popularity. Dr. Youden was 
unsurpassed in his skill in communicating sophisticated ideas in 
simple language. Moreover, he has created ingenious examples 
based on common everyday measurements in this book. It provides 
an excellent introduction to the realistic consideration of errors of 
measurement, and illustrates how statistics can contribute to the 
design, analysis and interpretation of experiments involving meas- 
urement data. 

The VISTAS of SCIENCE version has been out-of-print for a 
number of years. The original book has been reproduced in its 
entirety to preserve its authenticity, and to recognize the contribu- 
tions of the National Science Teachers’ Association. 

H. H. Ku 
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A WORD FROM THE AUTHOR 

One approach to the topic “measurement” would be the 
historical and factual. The curious early units of measurement 
and their use would make an interesting beginning. The devel- 
opment of modern systems of measurement and some of the 
spectacular examples of very precise measurement would also 
make a good story. 

I have chosen an entirely different approach. Most of those 
who make measurements are almost completely absorbed in the 
answer they are trying to get. Often this answer is needed to 
throw light on some tentative hypothesis or idea. Thus the 
interest of the experimenter is concentrated on his subject, 
which may be some special field of chemistry or physics or 
other science. 

Correspondingly, most research workers have little interest 
in measurements except as they serve the purpose of supplying 
needed information. The work of making measurements is all 
too often a tiresome and exacting task that stands between the 
research worker and the verification or disproving of his think- 
ing on some special problem. It would seem ideal to many 
research workers if they had only to push a button to get the 
needed data. 

The experimenter soon learns, however, that measurements 
are subject to errors. Errors in measurement tend to obscure 
the truth or to mislead the experimenter. Accordingly, the 
experimenter seeks methods to make the errors in his measure- 
ments so small that they will not lead him to incorrect answers 
to scientific questions. 

In the era of great battleships there used to be a continuous 
struggle between the makers of armor plate and the gunmakers 
who sought to construct guns that would send projectiles 
through the latest effort of the armor plate manufacturers. There 
is a somewhat similar contest in science. The instrument makers 



continually devise improved instruments and the scientists con- 
tinually undertake problems that require more and more accu- 
rate measurements. Today, the requirements for accuracy in 
measurements often exceed our ability to meet them. One con- 
sequence of this obstacle to scientific research has been a grow- 
ing interest in measurement as a special field of research in itself. 
Perhaps we are not getting all we can out of our measurements. 
Indeed, there may be ways to use presently available instru- 
ments to make the improved measurements that might be 
expected from better, but still unavailable, instruments. 

We know now that there are “laws of measurement” just as 
fascinating as the laws of science. We are beginning to put these 
laws to work for us. These laws help us understand the errors 
in measurements, and they help us detect and remove sources 
of error. They provide us with the means for drawing objective, 
unbiased conclusions from data. They tell us how much data 
will probably be needed. Today, many great research establish- 
ments have on their staffs several specialists in the theory of 
measurements. There are not nearly enough of these specialists 
to meet the demand for them. 

Thus I have thought it more useful to make this book an 
elementary introduction to the laws of measurements. But the 
approach is not an abstract discussion of measurements, instead 
it depends upon getting you to make measurements and, by 
observing collections of measurements, to discover for yourself 
some of the properties of measurements. The idea is to learn 
something about measurement that will be useful - no matter 
what is being measured. Some hint is given of the devices that 
scientists and measurements specialists use to get more out of 
the available equipment. If you understand something about the 
laws of measurements, you may be able to get the answers to 
your own research problems with half the usual amount of work. 
No young scientist can afford to pass up a topic that may double 
his scientific achievements. 

-W. J. YOUDEN 



1 INTRODUCTION 

The plan of the book 

EASUREMENTS are made to answer questions such as: How M long is this object? How heavy is it? How much chlorine 
is there in this water? 

In order to make measurements we need suitable units of 
measurement. When we ask the length of an object, we expect 
an answer that will tell us how many inches, or how many 
millimeters it is from one end of the object to the other end. 
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We need some way to find out how many times a unit quantity, 
such as a millimeter, is contained in the length of a particular 
object. Rarely will a unit of length go into the length of the 
object a whole number of times. Almost always our answer will 
be, “so many units plus some fractional part of a unit.” If a 
quantitative measurement of length is to be trusted, we must 
take great care that the unit we choose is invariable and suitable 
for the task. We must also have devised a method of measuring 
the object with this unit. 

Some measurements require only a simple procedure and 
little equipment. The apparatus may be no more than a scale 
marked off in the desired units. It is easy to measure the width 
of a table by using a meter stick marked off in centimeters and 
millimeters. The air temperature of a room is found by looking 
at a thermometer and reading the position of the mercury on 
the scale. The pressure in an automobile tire is found by apply- 
ing a tire gauge to the valve and looking at the scale to read the 
pounds of air pressure per square inch of surface in the tire. 

When the proper instrument is available and used carefully, 
many measurements require no more than a careful reading of a 
scale. On the other hand, most scientific measurements involve 
elaborate equipment and a complicated technique of using it. 

If a chemist wants to determine the amount of chlorine in a 
material, he may perform a fairly lengthy sequence of opera- 
tions. He must first weigh out a sample of the material and 
record the weight. The sample must be treated with an acid 
that will dissolve out all of the chlorine. Any insoluble residue 
must be filtered off to obtain a clear solution, and the filter paper 
must be washed carefully with excess acid to make sure that 
none of the chlorine is left behind. 

It then may be necessary to adjust either the acid concen- 
tration or the volume of the solution - or both - before adding 
a second reagent to precipitate the chlorine. The usual reagent 
is silver nitrate. Enough must be added to precipitate all the 
chlorine as insoluble silver chloride. This precipitate of silver 
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chloride is separated from the acid by filtering the suspension 
through a crucible with a porous bottom. 

Before doing this, however, it will be necessary to weigh the 
crucible, making sure that it is dry. The precipitate collected 
in the crucible should be then washed with distilled water to 
remove all traces of reagent and dried. The weight of the empty 
crucible subtracted from the weight of the crucible and the 
precipitate gives the weight of the silver chloride. 

By using the atomic weights of silver and chlorine, the pro- 
portion of chlorine in the silver chloride molecule can be deter- 
mined. The weight of silver chloride precipitate multiplied by 
this proportion gives the weight of chlorine in the precipitate. 
This, of course, is also the weight of the chlorine in the orig- 
inal sample. The weight of chlorine divided by the weight of 
the sample and multiplied by 100 gives the per cent of chlorine 
in the sample, thus completing the determination of chlorine. 

The Errors in Measurements 

If we consider that each weighing (sample, empty crucible, 
and crucible plus precipitate) is a measurement, we see that 
three measurements are necessary to measure the amount of 
chlorine in the material. This sketch of the analytical procedure 
reveals that there are several steps, all of which must be taken 
with great care. If the silver chloride precipitate is not carefully 
washed, the silver chloride may be contaminated and appear 
too heavy. If the precipitate is not transferred completely to 
the crucible, some may be lost. None of these steps can be 
carried out so that they are absolutely free of error. For example, 
since the silver chloride is very slightly soluble, some of the 
chloride will not be precipitated. This results in error. 

Evidently a measurement is subject to many sources of error, 
some of which may make the measurement too large, while 
others may tend to make the measurement too small. It is the 
aim of the experimenter to keep these sources of error as small 
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as possible. They cannot be reduced to zero. Thus in this or any 
measurement procedure, the task remains to try to find out how 
large an error there may be. For this reason, information about 
the sources of errors in measurements is indispensable. 

In order to decide which one of two materials contains the 
larger amount of chlorine, we need accurate measurements. If 
the difference in chlorine content between the materials is small 
and the measurement is subject to large error, the wrong ma- 
terial may be selected as the one having the larger amount of 
chlorine. There also may be an alternative procedure for deter- 
mining chlorine content. How can we know which procedure 
is the more accurate unless the errors in the measurements 
have been carefully studied? 

Making Mearuremontr 

The best way to find out about some of the difficulties in 
making measurements is to make measurements. Much of this 
book will be devoted to making measurements - to trying to 
find out something about the sources of errors in measurements 
and how they may be detected and minimized. 

The second chapter is an easy one. It goes a little more into 
detail about the importance of making good measurements and 
tells us something about the role of measurements in our every- 
day life and in business and commerce. In the third chapter we 
undertake a measurement that involves no more equipment 
than a book and a millimeter scale. Everyone who reads this 
book should try making several repetitions of the measurement 
described there. We will examine 96 similar measurements made 
by a class of girls. Such a large collection of measurements poses 
the problem of finding some convenient and precise method of 
describing the collection. Perhaps we can find some number 
to represent the whole collection and some other number that 
will represent the errors in the measurements. 

When you have made the measurements described in Chap- 
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ter 3, you will have completed your first exploration of the world 
of measurement. I t  will be natural for you to wonder if some 
of the things that you have learned on the first exploration apply 
to other parts of the measurement world. 

Scientific measurements are often time consuming and require 
special skills. In Chapter 4, we will examine the reports of other 
explorers in the world of measurement. You may compare their 
records with the results you found in order to see if there is 
anything in common. I hope you will be delighted to find that 
the things you have observed about your own measurements 
also apply to scientific and engineering data. 

Mapping the land of Measurement 

One of the primary tasks of all explorers -and scientists are 
explorers-is to prepare a map of an unknown region. Such a 
map will serve as a valuable guide to all subsequent travelers. 
The measurements made by countless researchers have been 
studied by mathematicians and much of the world of measure- 
ments has been mapped out. Not all of it, by any means, but 
certainly enough so that young scientists will be greatly helped 
by the existing maps. So Chapter 5 may be likened to a simpli- 
fied map of regions already explored. Even this simplified map 
may be something of a puzzle to you at first. 

Remember, Chapter 5, like a map, is something to be con- 
sulted and to serve as a guide. Yet people get lost even when 
they have maps. Don’t be surprised if you get lost. By the time 
you have made some more measurements, which amounts to 
exploration, you will begin to understand the map better and 
will be able to use it more intelligently. 

The rest of the book concems some other journeys in the land 
of measurement. Now that you have a map, you are a little 
better equipped. The next set of measurements that you can 
undertake yourselves requires the construction of a small instru- 
ment. Most measurements do involve instruments. It is a good 
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idea to construct the instrument yourself. 
Next we undertake an exploration that requires a team of 

four working together. These easy measurements will reveal 
how much can be learned from a very few measurements. 

Then comes a chapter which discusses in a brief manner 
another important problem confronting most investigators. We 
cannot measure everything. We cannot put a rain gauge in 
every square mile of the country. The location of the rain gauges 
in use constitutes a sample of all possible sites. Similarly, we 
cannot test all the steel bars produced by a steel mill. If the test 
involved loading each bar with weights until it broke, we would 
have none left to use in construction. So a sample of bars must 
be tested to supply the information about the strength of all 
the bars in that particular batch. There is an example in this 
chapter that shows something about the sampling problem. 

The final chapter describes a more complicated measurement 
and the construction and testing of a piece of equipment. All 
research involves some kind of new problem and the possibility 
of requiring new apparatus. Once you have constructed a piece 
of equipment and made some measurements with it, your r e  
spect for the achievements of the research worker will increase. 
Making measurements that will be useful to scientists is an 
exacting task. Many measurements are difficult to make. For 
this reason we must make the very best interpretation of the 
measurements that we do get. It is one of the primary purposes 
of this book to increase your skill in interpretation of experi- 
ments. 
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2. Why we need 
measurements 

measurement is always expressed as a multiple of some unit A quantity. Most of us take for granted the existence of the 
units we use; their names form an indispensable part of 
our vocabulary. Recall how often you hear or use the following 
words: degree Fahrenheit; inch, foot, and mile; ounce, pound, 
and ton; pint, quart, and gallon; volt, ampere, and kilowatt 
hours; second, minute, and day. Manufacturing and many other 



commercial activities are immensely helped by the general ac- 
ceptance of standard units of measurement. In 1875, there was 
a conference in Paris at which the United States and eighteen 
other countries signed a treaty and established an International 
Bureau of Weights and Measures. Figure 1 shows a picture of 
the International Bureau in France. 

Numbers and Units 

The system of units set up by the International Bureau is 
based on the meter and kilogram instead of the yard and pound. 
The metric system is used in almost all scientific work. Without 
a system of standard units, scientists from different countries 
would be greatly handicapped in the exchange of scientific 
information. The task of defining units still goes on. The prob- 
lem is not as easy as it might seem. Certain units may be chosen 
arbitrarily; for example, length and mass. After four or five units 
are established in this way, it turns out that scientific laws set 
up certain mathematical relations so that other units - density, 
for example - are derived from the initial set of units. 

Obvious also is the need of a number system. Very likely the 
evolution of number systems and the making of measurements 
were closely related. Long ago even very primitive men must 
have made observations that were counts of a number of objects, 
such as the day's catch of fish, or the numerical strength of an 
army. Because they involve whole numbers, counts are unique. 
With care, they can be made without error; whereas measure- 
ments cannot be made exactly. 

Air temperature or room temperature, although reported as 
52"F., does not change by steps of one degree. Since a report 
of 51" or 53" probably would not alter our choice of clothing, a 
report to the nearest whole degree is satisfactory for weather 
reports. However, a moment's thought reveals that the tempera- 
ture scale is continuous; any decimal fraction of a degree is 
possible. When two thermometers are placed side by side, care- 
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ful inspection nearly always shows a difference between the 
readings. This opens up the whole problem of making accurate 
measurements . 

We need measurements to buy clothes, yard goods, and car- 
pets. The heights of people, tides, floods, airplanes, mountains, 
and satellites are important, but involve quite different pro- 
cedures of measurements and the choice of appropriate units. 
For one or another reason we are interested in the weights of 
babies (and adults), drugs, jewels, automobiles, rockets, ships, 
coins, astronomical bodies, and atoms, to mention only a few. 
Here, too, quite different methods of measurements -and units 
-are needed, depending on the magnitude of the weight and 
on the accessibility of the object. 

Significance of Sma I I Differences 

The measurement of the age of objects taken from excava- 
tions of bygone civilizations requires painstaking measurements 
of the relative abundance of certain stable and radioactive 
isotopes of carbon; C-12 and C-14 are most commonly used. 
Estimates of age obtained by carbon dating have a known 
probable error of several decades. 

Another method of measuring the age of burial mounds 
makes use of pieces of obsidian tools or ornaments found in 
them. Over the centuries a very thin skin of material - thinner 
than most paper - forms on the surface. The thickness of this 
skin, which accumulates at a known rate, increases with age 
and provides an entirely independent measure of the age to 
compare with the carbon-14 estimate. Here time is estimated 
by measuring a very small distance. 

Suppose we wish to arrange some ancient objects in a series 
of ever-increasing age. Our success in getting the objects in the 
correct order depends on two things: the difference in ages 
between objects and the uncertainty in the estimate of the 
ages. Both are involved in attaining the correct order of age. 
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If the least difference in age between two objects is a century 
and the estimate of the age of any object is not in error by 
more than forty years, we will get the objects in the correct 
order. Inevitably the study of ancient civilizations leads to an 
effort to get the correct order of age even when the differences 
in age are quite small. The uncertainty in the measurement 
of the age places a definite limitation on the dating of a r c h e  
logical materials. 

The detection of small differences in respect to some prop- 
erty is a major problem in science and industry. Two or more 
companies may submit samples of a material to a prospective 
purchaser. Naturally the purchaser will want first of all to 
make sure that the quality of the material he buys meets his 
requirements. Secondly, he will want to select the best mate- 

Figure 1. Measurement standards for tne world are maintained 



rial, other things, such as cost, being equal. 
When we buy a gold object that is stated to be 14 carats 

fine, this means that the gold should constitute 14/24 of the 
weight. We accept this claim because we know that various 
official agencies occasionally take specimens for chemical analy- 
sis to verify the gold content. 
An inaccurate method of analysis may lead to an erroneous 

conclusion. Assuming that the error is in technique and not 
some constant error in the scales or chemicals used, the chemi- 
cal analysis is equally likely to be too high as it is to be too 
low. If all the items were exactly 14 carats, then chemical 
analysis would show half of them to be below the specified 
gold content. Thus an article that is actually 14 carats fine 
might be unjustly rejected, or an article below the required 

in Paris at the International Bureau of Weights and Measurements. 



content may be mistakenly accepted. A little thought will show 
that if the error in the analysis is large, the manufacturer of 
the article must make the gold content considerably more than 
14/24 if he wishes to insure acceptance of nearly all the items 
tested. 

There are two ways around this dilemma. The manufacturer 
may purposely increase the gold content above the specified 
level. This is an expensive solution and the manufacturer must 
pass on this increased cost. Alternatively, the parties concerned 
may agree upon a certain permissible tokrunce or departure 
from the specified gold content. Inasmuch as the gold content 
cannot be determined without some uncertainty, it appears 
reasonable to make allowance for this uncertainty. How large 
a tolerance should be set? This will depend primarily on the 
accuracy of the chemical analysis. The point is that, besides 
the problem of devising a method for the analysis of gold 
articles, there is the equally important problem of determining 
the sources of error and size of error of the method of analysis. 
This is a recurrent problem of measurement, regardless of the 
material or phenomenon being measured. 

There may be some who feel that small differences are un- 
important because, for example, the gold article will give 
acceptable service even if it is slightly below 14 carats. But 
small differences may be important for a number of reasons. 
If one variety of wheat yields just one per cent more grain 
than another variety, the difference may be unimportant to a 
small farmer. But added up for the whole of the United States 
this small difference would mean at least ten million more 
bushels of wheat to feed a hungry world. 

Sometimes a small difference has tremendous scientific con- 
sequences, Our atmosphere is about 80 per cent nitrogen. 
Chemists can remove the oxygen, carbon dioxide, and moisture. 
At one time the residual gas was believed to consist solely of 
nitrogen. There is an interesting chemical, ammonium nitrite, 
NHINO~. This chemical can be prepared in a very pure form. 
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When heated, ammonium nitrite decomposes to give nitrogen 
(N2 ) and water ( HzO) . Now pure nitrogen, whether obtained 
from air or by the decomposition of NHINO~, should have 
identical chemical and physical properties. In 1890, a British 
scientist, Lord Rayleigh, undertook a study in which he compared 
nitrogen obtained from the air with nitrogen released by heating 
ammonium nitrite. He wanted to compare the densities of the 
two gases; that is, their weights per unit of volume. He did this 
by filling a bulb of carefully determined volume with each gas 
in turn under standard conditions: sea level pressure at 0" 
centigrade. The weight of the bulb when full minus its weight 
when the nitrogen was exhausted gave the weight of the 
nitrogen. One measurement of the weight of atmospheric nitro- 
gen gave 2.31001 grams. Another measurement on nitrogen 
from ammonium nitrite gave 2.29849 grams. The difference, 
0.01152, is small. Lord Rayleigh was faced with a problem: was 
the difference a measurement error or was there a real difference 
in the densities? On the basis of existing chemical knowledge 
there should have been no difference in densities. Several addi- 
tional measurements were made with each gas, and Lord Rayleigh 
concluded that his data were convincing evidence that the ob- 
served small difference in densities was in excess of the experi- 
mental errors of measurement and therefore actually existed. 

There now arose the intriguing scientific problem of finding 
a reason for the observed difference in density. Further study 
finally led Lord Rayleigh to believe that the nitrogen from the 
air contained some hitherto unknown gas or gases that were 
heavier than nitrogen, and which had not been removed by 
the means to remove the other known gases. Proceeding on this 
assumption, he soon isolated the gaseous element argon. Then 
followed the discovery of the whole family of the rare gases, 
the existence of which had not even been suspected. The small 
difference in densities, carefully evaluated as not accidental, 
led to a scientific discovery of major importance. 

Tremendous efforts are made to improve our techniques of 
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making measurements, for who knows what other exciting dis- 
coveries still lie hidden behind small differences. Only when 
we know what are the sources of m o r  in our measurements 
can we set proper tolerances, evaluate small differences, and 
estimate the accuracy of our measurements of physical con- 
stants. The study of measurements has shown that there are 
certain properties common to all measurements; thus certain 
mathematical laws apply to all measurements regardless of what 
it is that is measured. In the following chapters we will find out 
some of these properties and how to use them in the interpreta- 
tion of experimental data. First,we must make some measure- 
ments so we can experience first hand what a measurement is. 
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3. Measurements in 
experimentation 

HE object of every scientific experiment is to answer some 
Tq uestion of interest to a scientist. Usually the answer comes 
out in units of a system of measurement. When a measurement 
has been made the scientist trusts the numerical result and uses 
it in his work, if the measurement apparatus and technique are 
adequate. An important question occurs to us right away. How 
do we know that the measurement apparatus and technique 



are adequate? We need rules of some kind that will help us to 
pass judgment on our measurements. Later on we will become 
acquainted with some of these checks on measurements. 

Our immediate task is to make some measurements. The 
common measurements made every day, such as reading a 
thermometer, differ in a very important respect from scientific 
measurements. Generally we read the thermometer to the near- 
est whole degree, and that is quite good enough for our pur- 
poses. If the marks are one degree apart, a glance is enough 
to choose the nearest graduation. If the interval between 
adjacent marks is two degrees, we are likely to be satisfied 
with a reading to the nearest even number. If the end of the 
mercury is approximately midway between two marks, we 
may report to the nearest degree, and that will be an odd- 
numbered degree. 

The Knack of Estimating 

Fever thermometers cover only a small range of temperature. 
Each whole degree is divided into fifths by four smaller marks 
between the whole degree graduation marks. The fever ther- 
mometer is generally read to the nearest mark. We get readings 
like 98.6", !39.8", or 100.2" F. As the fever rises, readings are 
taken more carefully and the readings may be estimated be- 
tween marks, so that you may record 102.3". Notice that body 
temperature can easily be read to an extra decimal place over 
the readings made for room temperatures. This is possible 
because the scale has been expanded. 

Examine a room thermometer. The graduation marks are 
approximately one sixteenth of an inch apart. The mercury may 
end at a mark or anywhere in between two adjacent marks. It 
is easy to select a position midway between two marks. Posi- 
tions one quarter and three quarters of the way from one mark 
to the next mark are also fairly easy to locate. Usually we do 
not make use of such fine subdivisions because our daily needs 
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do not require them. In making scientific measurements, it is 
standard practice to estimate positions in steps of one tenth 
of the interval. Suppose the end of the mercury is between the 
70 and 71 degree mark. You may feel a little uncertain whether 
the mercury ends at 70.7" or at 70.8'. Never mind, put down 
one or the other. Practice will give you coddence. Experts 
may estimate the position on a scale to one twentieth of a scale 
interval. Very often a small magnifying glass is used as an aid 
in making these readings. 

Here is an example of a scientific problem that requires pre- 
cise temperature readings. Suppose that you collect some 
rain water and determine that its freezing point is 32°F. 
Now measure out a quart of the rain water sample and add one 
ounce of table sugar. Place a portion of this solution in a freez- 
ing-brine mixture of ice and table salt, stirring it all the while. 
Ice will not begin to appear until the temperature has dropped 
to a little more than 0.29"F., below the temperature at which 
your original sample begins to turn to ice. 

From this simple experiment you can see that freezing points 
can be used to determine whether or not a solvent is pure. The 
depressions of the freezing point produced by dissolving sub- 
stances in solvents have long been a subject of study. In these 
studies temperatures are usually read to at least one thousandth 
of a degree, by means of special thermometers. The position of 
the mercury is estimated to a tenth of the interval between 
marks which are 0.01 of a degree apart. Very exact temperature 
measurements taken just as the liquid begins to freeze can be 
used to detect the presence of minute amounts of impurity. 

In scientific work the knack of estimating tenths of a division 
on scales and instrument dials becomes almost automatic. The 
way to acquire this ability is to get some practice. We will now 
undertake an experiment that will quickly reveal your skill in 
reading subdivisions of a scale interval. The inquiry that we 
are to undertake is to measure the thickness of the paper used 
in one of your textbooks. Although a single sheet of paper is 
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much thinner than the smallest scale divisions on a ruler, a 
simple procedure will make it possible for you to determine the 
thickness of the paper quite accurately. The procedure consists 
of reading the thickness of a stack of sheets of the paper and 
dividing the reading by the number of sheets in the stack. 
Simple as this procedure appears, we will find that it reveals 
quite a lot about measurements. 

Prepare a form for recording the measurements. Strangely 
enough, careful measurements are sometimes so poorly recorded 
even by professional scientists that not even the experimenter 
can interpret them sometime later. A form suitable for this 
experiment with spaces to enter four separate observations is 
shown in Table 1. Note that the form identifies the observer, 
the source of the data, and the date of the experiment 
or observation. These are characteristics of useful forms. 

Choose a book without inserts of special paper. First open 
the book near the beginning and also near the end. Hold the 
stack of pages together. This is the stack whose thickness we 
will measure with a ruler marked off in centimeters and milli- 
meters. We will estimate tenths of a millimeter. 

There are a number of details to observe even in this simple 

Table 1. Example of a form for keeping a record of measurements. 
Experiment to measure thickness of sheets of paper 

Observer: B. G. Date: March 16, 1961 
Book title and author: MODERN CHEMISTRY, Dull, Metcalfe and Williams 

obser- page number pa.ges sheets stack thickness 
vation at at in in thickness per sheet 

number front back stack stack mm. mm. 
1 67 387 320 160 12.4 0.0775 
2 41 459 418 209 16.4 0.0785 
3 23 549 526 263 20.0 0.0760 
4 35 52 1 486 243 18.5 0.0761 

Total 0.3081 
Average 0.0770 

[Dab Uken by a student a1 Immaculata Hlgh School, Waihlngton. D C 1 



experiment. Read the numbers on the first page of the stack 
and that on the page facing the last page of the stack. Both 
numbers should be odd. The difference between these two num- 
bers is equal to the number of pages in the stack. This dif- 
ference must always be an even number. Each separate sheet 
accounts for two pages, so divide the number of pages by two to 
get the number of sheets. Enter these data on the record form. 

Pinch the stack firmly between thumb and fingers and lay 
the scale across the edge of the stack. Measure the thickness of 
the stack and record the reading. The stack will usually be 
between one and two centimeters thick; i.e., between 10 and 
20 mm. (millimeters). Try to estimate tenths of a millimeter. 
If this seems too hard at first, at least estimate to the nearest 
one fourth (0.25) of a millimeter. Record these readings as 
decimals. For example, record 14 and an estimated one fourth 
of a division as 14.25. 

Measurements Do Not Always Agree 

After you have made the first measurement, close the book. 
Then reopen it at a new place and record the new data. Make 
at least four measurements. Now divide the reading of the thick- 
ness by the number of sheets in the stack. The quotient gives 
the thickness of one sheet of paper as &decimal part of a milli- 
meter. When this division is made for each measurement, you 
will certainly find small differences among the quotients. You 
have discovered for yourself that measurements made on the 
same thing do not agree perfectly. To be sure, the number of 
sheets was changed from one measurement to the next. But that 
does not explain the disagreement in the answers. Certainly a 
stack of 200 sheets should be just twice as thick as a stack of 
100 sheets. When the stack thickness is divided by the number 
of sheets we should always get the thickness of a single sheet. 

There are two major reasons for the disagreement among the 
answers. First, you may pinch some of the stacks more tightly 
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than others. You could arrange to place the stack on a table top 
and place a flatiron on the stack. This would provide a uniform 
pressure for every measurement. The second major reason is 
your inexpertness in reading the scale and estimating between 
the scale marks. Undoubtedly this is the more important of the 
two reasons for getting different answers. The whole reason for 
insisting on closing the book was to make sure the number of 
sheets was changed each time. You knew the thickness would 
change and expected to get a change in your scale reading. 
Unless you are very good in mental arithmetic you could not 
predict your second scale reading. 

Suppose, however, that you were able to do the necessary 
proportion in your head. If you knew in advance what the 
second scale reading should be to make it check with your first 
result, this would inevitably influence your second reading. 
Such influence would rob the second reading of the indispen- 
sable independence that would make it worthy of being called 
a measurement. 

It may be argued that all four answers listed in Table 1 agree 
in the first decimal place. Clearly all the answers are a little 
less than 0.08 mm. Thus any one of the results rounded off would 
give us this answer. Why take four readings? 

Just to take a practical everyday reason, consider the paper 
business. Although paper in bulk is sold by weight, most users 
are also concerned with the thickness of paper and sue of the 
sheet. Thick paper will mean fewer sheets of a given size per 
unit weight paid for. A variation of as little as 0.01 mm. -the 
difference between 0.08 mm. and 0.09 mm. -would reduce the 
number of sheets by more than ten per cent. We need to know 
the answer to one or two more decimal places. In a situation 
like this, it is usual to obtain the average of several readings. 
You should note, however, that although repetition alone doesn’t 
insure accuracy, it does help us locate errors. 

Many people seem to feel that there is some magic in the 
repetition of measurements and that if a measurement is re- 
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peated frequently enough the final result will approach a “true” 
value. This is what scientists mean by accuracy. 

Suppose that you were in science class and that the next two 
people to come into your classroom were a girl five feet ten 
inches tall and a boy five feet nine inches tall. Let each of the 
30 students already in the class measure the two new arrivals 
to the nearest foot. The answer for both is six feet. Has repeated 
measurement improved the accuracy? 

Suppose that the hypothesis to be tested was that girls are 
taller than boys. This time the boy and the girl were each 
measured 30 times with a ruler that read to 1,400 of an inch. 
Could we conclude that the repeated measurements really sup- 
ported the hypothesis? The point is that repeated measurements 
alone do not insure accuracy. However, if a set of measurements 
on the same thing vary widely among themselves we begin to 
suspect our instruments and procedures. This is of value if we 
are ever to achieve a reasonable accuracy. 

Paper thickness is so important in commerce that the Ameri- 
can Society for Testing Materials has a recommended procedure 
for measuring the thickness of paper. A standard pressure is put 
on the stack and a highly precise instrument called a micrometer 
is used to measure the thickness. Even then the results show a 
scatter, but farther out in the decimal places. Improved instru- 
ments do not remove the disagreement among answers. In fact 
the more sensitive the apparatus, the more surely is the varia- 
tion among repeat measurements revealed. Only if a very coarse 
unit of measurement is used does the disagreement disappear. 
For example, if you report height only to the nearest whole 
meter practically all adult men will be two meters tall. 

It used to be a common practice among experimenters to pick 
out the largest and smallest among the measurements and report 
these along with the average. More often today the difference 
between the largest and smallest measurement is reported to- 
gether with the average from all the measurements. This differ- 
ence between the maximum and minimum values is called the 
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range of the group. The range gives some notion of the variation 
among the measurements. A small range, or a range which is a 
small percentage of the average, gives us more confidence in 
the average. Although the range does reveal the skill of the 
operator, it has the disadvantage of depending on the number 
of measurements in the group. The same operator usually will 
find his average range for groups of ten measurements to be 
about 1.5 times as large as the range he gets for groups of four 
measurements. So the number of measurements in the group 
must always be kept in mind. 

Averages, Ranges, and Scatter 

The data for operator B. G. have been given in complete 
detail in Table 1. This operator was one of a class of 24 girls, 
all of whom made four measurements on the same book. This 
larger collection of data will reveal still more about measure- 
ments. The measurements made by these girls are tabulated in 
Table 2, which shows the computed thickness for each trial. 
The details of pages and millimeters have been omitted. Most of 
the girls did not estimate tenths of a millimeter but did read to 
the nearest quarter millimeter. Two or three had readings only 
to the nearest whole millimeter. A gross misreading of the scale 
was evidently made by girl U on her last trial. This value has 
been excluded from the average and no range entered for this 
student. 

The remaining 23 ranges vary widely. This does not neces- 
sarily mean that some girls were better than others in reading 
the scale. Even if all girls had the same skill, the range may vary 
severalfold when it is based on just four measurements. Of 
course, if this class of girls repeated the measurements and the 
very small ranges and very large ranges were produced by the 
same girls as before, this would indicate that some girls can 
repeat their measurements better than other girls. One way to 
summarize the results is to give the average thickness, 0.07709, 
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and the average of the 23 ranges, 0.00483. The last two places of 
decimals are quite uncertain for both these averages. Indeed, a 
mathematician would say we cannot be sure that the second 
seven in 0.07709 is correct. Additional decimal places are always 
carried when making computations and these should be entered 
in the data record. 

Table 2. Tabulation of 96 measurements of paper thickness made by 
24 girls. 

girl 
A 
B 
C 
D 
E 
F 
G* 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
w 
X 

.0757 

.0808 

.0811 

.0655 

.0741 

.0756 

.0775 

.0747 

.07 19 

.0734 

.0755 

.0788 

.073 1 

.0833 

.0767 

.0787 

.0784 
,0784 
.0830 
.0741 
.0759 
.08 10 
.0777 
. 0 784 

thickness in mm. 
.0762 
.0793 
.0772 
.0683 
.0710 
.0772 
.0785 
.0765 
.0762 
.0833 
.0740 
.08 17 
.07 16 
.0794 
.0775 
.0798 
.0799 
.0820 
.0796 
.0680 
.0766 
.08 12 
.0759 
.0786 

.0769 

.0781 

.0770 

.07 14 

.0748 

.0776 

.0760 

.0735 

.0802 
,0833 
.0714 
.0794 
.0726 
.0783 
.0765 
.0864 
.0789 
.0796 
,0778 
.0733 
.0772 
.0789 
.0795 
,0797 

average 
.0746 .0758 
.0821 .0801 
.0756 .0777 
.0746 .0700 
.0711 .0728 
.0759 .0766 
.0761 .0770 
.0776 .0756 
.0713 .0749 
.0783 .0796 
.0743 .0738 
.0766 .0791 
.0714 .0722 
.0788 .0800 
.0793 .0775 
.0817 .0816 
.0802 .0794 
.0818 .0804 
.0767 .0793 
.0723 .0719 
.0466** .0766 
.0776 .0797 
.0790 .0780 
.0859 .08M 

range 
BO23 
.0040 
.0055 
.009 1 
.0038 
.0020 
.0025 
.004 1 
.0089 
.0099 
.0041 
.0051 
.0017 
.0050 
.0028 
.0077 
.0018 
.0036 
.0063 
.0061 

.0036 

.0036 

.0075 

- 

+ 
0 
4 
2 
0 
0 
2 
2 
1 
1 
3 
0 
3 
0 
4 
2 
4 
4 
4 
3 
0 
1 
4 
3 
4 

- 
4 
0 
2 
4 
4 
2 
2 
3 
3 
1 
4 
1 
4 
0 
2 
0 
0 
0 
1 
4 
3 
0 
1 
0 

Total for 95 measurements 
Average for 95 measurements = 0.07709 
Average for 23 ranges = 0.00483 

= 7.3239 

*G is the same student, B.G., reported in Table 1. 
**The last measurement made by student U is .W66. This appears to be a mistake 

as it is little more than half as large as the other measurements. This measure- 
ment is omitted from the collection and the total and average computed from 
the m i n i n g  95 measurements. 



Notice that the number of sheets in the stack involves three 
significant figures. The quotient or thickness per sheet is there- 
fore carried out to three significant figures. To use only two 
figures would be equivalent to rounding off the number of sheets 
before dividing. Failure to carry enough figures tends to conceal 
the variation in the data. 

Condensing Our Data 

Tabulated results, as shown in Table 2,look like a sea of num- 
bers. There is a way to bring out the essential characteristics of 
such collections of many measurements on the same thing. 
Paradoxically we may condense the data into more compact 
form and at the same time get a better picture of the collection. 
The smallest of the 95 results is 0.0655 mm. and the largest is 
0.0864 mm. The range for these 95 results is therefore 0.0209. 
Suppose we form a series of intervals to cover this range. We 
may start out at 0.0650 mm. and make each interval equal to 
0.0020 mm. The size of the interval should be small enough so 
that at least six intervals will be needed. If there are many 
measurements there should be more intervals than with few 
measurements. Table 3 shows eleven intervals that completely 
cover the whole range of values. 

The intervals are written down in a column. Then each of the 
values in Table 2 (except the apparent mistake) is placed in its 
proper interval by making a pen stroke opposite the interval 
class. The actual values are, in effect, replaced by the mid-values 
of the interval class to which they have been assigned. The 
slight change made by using the mid-values of the intervals is 
of no consequence. Indeed, some values are slightly increased 
and others decreased. Much of the effect therefore cancels out. 

Now we are beginning to get some order in our sea of num- 
bers. The mass of individual items in the data now have been 
replaced by the eleven different mid-values along with the num- 
ber of measurements assigned to each mid-value. The last 



column shows the product of each mid-value by the number of 
measurements that go with it. The total for this column, 7.32925, 
is close to the total, 7.3239 (Table 2 ) ,  of the actual measure- 
ments. The averages obtained by dividing each total by 95 are 
0.07715 and 0.07709. The difference is quite unimportant. 

Table 3. Retabulation of data in Table 2 

measurement number of measurements in this 
in terva I interval 

.0650 - .0669 / 

.0670 - ,0689 / /  

.0690 - .0709 

.0710 - .0729 

.0730- .0749 // /  / / /  / / /  / / /  

.0750 - .0769 / / /  / / /  / / /  / / /  / / /  / / /  

.0770-.0789 // /  /// / I /  / / /  / / /  / / /  I / /  / / /  

.0790-.0809 I / /  /I/ / / /  / / /  I /  

.0810 - ,0829 11 

.0830 - ,0849 

.0850 - ,0869 // 

1 
2 
0 

10 
12 
18 
24 
14 
8 
4 
2 

mid-value of 
interval 

.06595 

.06795 
.06995 
.07195 
.07395 
.07595 
.07795 
.07995 
,08195 
.08395 
.08595 

no. times 
mid-value 

.06595 

.13590 

.71950 

.88740 
1.36710 
1.87080 
1.11930 
.65560 
,33580 
.17190 

- 

Total 95 7.32925 
Average 0.077 15 

Grouping measurements into intervals is standard practice. 
The presentation of the data is more concise. Furthermore a 
glance at the check marks made opposite the intervals in Table 3 
tells us something about the data. We see that the interval 
containing the average contains more measurements than any 
other - it is called the nzodnl intercal. Intervals on either side of 
the modal interval have fewer measurements in them. The num- 
ber in each interval falls off sharply near the end intervals. 
Apparently measurements that differ considerably from the 
average are relatively scarce. This is an encouraging thought 
for experimenters. Obviously, however, there is a chance of 
getting one of these scarce measurements. Experimenters are 
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naturally much interested in knowing what the risk is of getting 
a meascrenient quite distant from the average. 

Often the counts of the measurements in the intervals are 
shown graphically. One wav to do this is by means of a 
histogram as shown in Figure'2. To make this histogram, the 11 
intervals were marked off as equal segments on a horizontal line. 
A suitable scale is laid off on a vertical line to designate the 
number of measurements in each interval. Horizontal bars are 
drawn at the proper heights and connected as shown. The gen- 
eral form of this histogram, the intervals, and the number in 
each interval, tell the expert just about evervthing that the 
actual measurements would. 

We have seen one histogram and obtained some idea of the 
way this collection of measurements is distributed around an 

Figure 2. Histogram for 95 measurements of paper thickness 
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average. In Chapter 4 several different collections of measure- 
ments are represented by histograms. You will then be able to 
observe that in many collections of measurements there are 
similarities in the distributions regardless of the objects being 
measured. This fact has been of crucial importance in the devel- 
opment of the laws of measurement. 

Let’s return to our measurements of paper thicknesses and 
investigate some of the properties of this collection. The meas- 
urements in the collection should meet certain requirements. 
One of these requirements is that each of the four measure- 
ments made by a student should be a really independent meas- 
urement. By that we mean that no measurement is influenced by 
any following measurement. Another requirement is that all 
participants should be equally skillful. If some measurements 
were made by a skilled person and some by a novice, we should 
hesitate to combine both collections. Rather we should make a 
separate histogram for each individual. We would expect the 
measurements made by the skillful one to stay closer to the 
average. His histogram might be narrow and tall when com- 
pared with the histogram for the novice. The readings made by 
the novice might be expected to show a greater scatter. Histo- 
g r a m s  can provide a quick appraisal of the data and the tech- 
nique of the measurer. 

Four measurements are too few to rate any individual. Never- 
theless, the availability of 24 individuals makes it possible to 
explore still another property of these data. If we think about 
the measurement procedure, we see that it is reasonable to 
assume that any given measurement had an equal chance of 
being either larger or smaller than the average. In any particular 
measurement the pressure on the stack could equally well have 
been either more or less than the average pressure. The scale 
reading may have erred on the generous side or on the skimpy 
side. If these considerations apply, we would expect a sym- 
metrical histogram. Our histogram does show a fair degree of 
s v e t v .  
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Insights From the Laws of Chance 

Before we conclude that the requirements for putting all the 
measurements into one collection have been fully satisfied, we 
must carefully examine the data. The reason we changed the 
number of pages for each measurement was to avoid infiuencing 
later readings by preceding readings. If we happened to get too 
large a reading on the first measurement, this should not have 
had the effect of making subsequent readings too large. We are 
assuming, of course, that the pressure applied to the stack varied 
with each measurement, and that the reading of the scale was 
sometimes too large and sometimes too small. It also seems 
reasonable to assume that there is a 50-50 chance of any one 
measurement being above or below the average value. Is this 
true of the measurements made by the girls in this science class? 

It is conceivable, of course, that a particular individual always 
squeezes the paper very tightly and in consequence always gets 
lower readings than the average for the class. Another person 
might always tend to read the scale in a way to get high read- 
ings. If this state of affairs exists, then we might expect that all 
readings made by a particular individual would tend to be either 
higher or lower than the average, rather than splitting 50-50. 

Let us think about a set of four measurements in which each 
measurement is independent and has the same chance to be 
more than the average as it has to be less than the average. 
What kind of results could be expected by anyone making the 
four measurements? One of five things must happen: All four 
will be above the average, three above and one below, two above 
and two below, one above and three below, all four below. 

Our first impulse is to regard a result in which all four meas- 
urements are above (or below) the average as an unlikely event. 
The chance that a single measurement will be either high or low 
is 50-50,just as it is to get heads or tails with a single coin toss. 
As an illustration, suppose a cent, a nickel, a dime, and a quarter 
are tossed together. The probabilities of four heads, three heads, 
two heads, one head, or no heads are easily obtained. The pos- 
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Table 4. Possible ways four coins may fall when they are tossed together. 

One way to get no heads 

Four ways 
to get only one head 

Six ways 
to get only two heads 

Four ways 
to get only three heads 

One way to get four heads 

cent nickel dime quarter 

T T T T 

H T T T 
T H T T 
T T H T 
T T T H 

H H T T 
H T H T 
H T T H 
T H H T 
T H T H 
T T H H 

H H H T 
H H T H 
H T H H 
T H H H 

H H H H 

sible ways the four coins might fall are enumerated in Table 4. 
There are just sixteen different ways in which the coins may 

fall. We may easily calculate our chances of getting no heads, 
one head, two, three, or four heads. For example, we find there 
is only one way to get four heads-the chance is 1 in 16. Re- 
member that this calculation assumes that a tossed coin is 
equally likely to fall heads as it is tails. Incidentally, the 
chances are not altered if four cents are used, as you can 
determine for yourselves by trying it out. The mathematical 
experb among the readers will know that ( H  + T )  * = H 4  + 
4H3T -k 6H2T2 + 4HT3 + T’. Observe that the coefficients 
1, 4,6, 4, 1 correspond to the counts shown in Table 4. Some of 
you may be inclined to find out whether or not this relationship 
holds if three, five, or n coins are tossed instead of four coins. 

Let’s now see how the results from tossing four coins can serve 
as a useful model in examining the collection of measurements 
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made on the thickness of. paper. If - as in the case of heads or 
tails, when coins are tossed - high or low readings are equally 
likely, we conclude that there is 1 chance in 16 of getting four 
high readings and 1 chance in 16 of getting four low readings. 
There are 4 chances in 16 of getting just one high reading and 
an equal chance of getting just three high readings. Finally there 
are 6 chances in 16 of getting two high readings and two low 
readings. 

Now to apply this model to the entire collection of 24 sets of 
four measurements each, we can multiply each of the coeffi- 
cients on the preceding page by 1.5 (24/16 - 1.5). This will 
give us the expected frequencies of highs and lows for 24 sets 
of four measurements as shown in the third line of Table 5. 

We must not expect that these theoretical frequencies are 
going to turn up exactly every time. You can try tossing four 
coins 24 times and recording what you get. There will be small 
departures from theory, but you may coddently expect that in 
most of the 24 trials you will get a mixture of heads and tails 
showing on the four coins. 

The last two columns in Table 2 are headed by a plus and by 
a minus sign. In those columns the individual readings are com- 
pared with the average of all the readings, 0.07709, to determine 
whether they are above (plus) or below (minus) the average. 
Note that girl A had four readings all below the average, so four 
is entered in the minus column and zero in the plus column. 
Girl B’s readings are just the reverse, all four are above the 
average. Girl C had two above and two below. We next count 
up the frequencies for the various combinations, and find them 
to be 6,3,4,4, and 7 respectively. These numbers are entered in 
the fourth line of Table 5. 

When we examine these frequencies a surprising thing con- 
fronts us. We find far too many girls with measurements either 
all above or all below the average. In fact there are 13 of these 
against an expected three. This disparity is far too great to be 
accidental. Evidently our assumed model does not fit the facts. 
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Table 5. Five ways to place 24 sets of four measurements with reference 
to the average. 

High readings 4 3 2 1 0 
(Above the average) 

Low readings 0 1 2 3 4 TOTAL 
(Below the average) 
Expected frequency 1.5 6 9 6 1.5 24 
for 24 measurements 
Observed frequency 7 4 4 3 6 24 
(from our data) 

The hope of complete independence for the readings has not 
been realized. It seems that if the first reading was high, subse- 
quent readings also tended to be high. The same holds true if 
the first reading happened to be low. Evidently many of these 
girls had a particular wav of measuring that persisted through- 
out all four measurements. We see that for many of these girls 
agreement of the four measurements with each other does not 
tell the whole story. All four measurements may be quite high 
or quite low. We sometimes say that such individuals are subject 
to biases. 

Bias-a Major Consideration 

Once a scientist or measurement specialist detects or even 
suspects that his readings are subject to a bias, he tries to take 
steps to locate the bias and to correct his measurement pro- 
cedure. The goal is to reduce bias as far as possible. Experience 
shows that only rarely can biases be completely eliminated. We 
can be quite sure in this case that some of the girls have rather 
marked biases and this complicates the interpretation of the 
data. Nevertheless, since there are nearly as many girls with 
plus biases as those with negative biases, the histogram is still 
reasonably symmetrical. 

One way to think about these measurements is to regard the 
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set of four measurements made by any one girl as having a 
certain scatter about her own average. Her average may be 
higher or lower than the class average; so we may think of the 
individual averages for all the girls as having a certain scatter 
about the class average. Even this simple measurement of the 
paper thickness reveals the complexity and problems of making 
useful measurements. A measurement that started out to be 
quite simple has, all of a sudden, become quite a complicated 
matter, indeed. 

One more property of these data should be noted. Table 2 
lists the average of the four measurements made by each girl. 
There are 23 of these averages (one girl's measurements were 
excluded). The largest average is 0.0816 and the smallest is 
0.0700. The largest of the measurements, however, was 0.0864 
and the smallest was 0.0655. Observe that the averages are not 
scattered over as wide a range as the individual measurements. 
This is a very important property for averages. 

In this chapter we have used data collected in only a few 
minutes by a class of girls. Just by looking at the tabulation of 
96 values in Table 2 we found that the measurements differed 
among themselves. A careful study of the measurements told 
us quite a lot more. 

We have learned a concise and convenient way to present the 
data, and that a histogram based on the measurements gives a 
good picture of some of their properties. We also observed that 
averages show less scatter than individual measurements. And 
most interesting of all, perhaps, we were able to extract from 
these data evidence that many of the students had highly per- 
sonal ways of making the measurement. This is important, for 
when we have located shortcoming in our ways of making 
measurement we are more likely to be successful in our attempts 
to improve our measurement techniques. 
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4. Typical collections 
of measurements 

N the preceding chapter a careful study was made of 96 I measurements of the thickness of paper used in a textbook. 
We learned how to condense the large number of measurements 
into a few classes with given mid-values. The mid-values to- 
gether with the number in each class provided a concise sum- 
mary of the measurements. This information was used to con- 
struct a histogram, which is a graphical picture of how the 



measurements are distributed around the average value of the 
measurements. In this chapter a number of collections of data 
will be given together with their histograms. We are going to 
look for some common pattern in the way measurements are 
distributed about the average. 

The first example concerns 100 measurements to determine 
the amount of magnesium in different parts of a long rod of 
magnesium alloy. Chemists find it convenient to have on hand 
specimens of an alloy of known composition. Such specimens 
make it easy for the chemist to calibrate the equipment used in 
the analysis of metals and make sure that it is working properly. 

In this example, an ingot of magnesium alloy was drawn into 
a rod about 100 meters long and with a square cross section 
about 4.5 centimeters on a side. The long rod was cut into 100 
bars, each a meter long. Five of the bars were selected at 
random and a flat test piece about 1.2 centimeters thick was 
cut from each. These served as test specimens. 

On each of the five specimens ten test points were located in 
the pattern shown in Figure 3. This gave 50 spots in all. Two 
determinations of the magnesium content were made at each 

The total collection of 100 determinations is shown in Table 6. 
The determinations range from 0.062 to 0.082 per cent of mag- 
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nesium. One unit in the last 
place was used as the inter- 
val for drawing the histo- 
gram in Figure 4. To avoid 
crowding the scale the inter- 
vals are labeled 62, 63, . . , 

instead of 0.062, 0.063. . . . 
On the histogram the lone 
high reading of 0.082 shows 
up like a sort thumb. How 
can we account for it? 

Perhaps the analyst mis- 
read his instrument. That 
seems more likely than to 

Figure 3. Pattern for locating 
test points on cross section of 
alloy bar. 

assume the existence of a single isolated spot much higher in 
magnesium than the 49 other spots. The safest guide to choosing 
between these alternatives would be to repeat that analysis. 
In fact a duplicate analysis of that spot was made and gave the 
value 0.072. The duplicates differ by 0.010. 

We may get some more help in this situation by examining 
the other 49 differences between the duplicates. The analyst 
ran all 50 spots once and then made a set of repeat determina- 
tions. When the results of the second set are subtracted from 
the first results as shown in Table 7, an interesting state of affairs 
is revealed. Plus differences predominate. There are 40 plus 
differences and only ten negative differences. As a rule, the 
entire second set seems to be lower than the first set. One might 
assume that under normal conditions there would be no reason 
to expect the second measurement on a spot to be smaller than 
the first one. It would be more reasonable to expect that it would 
be a toss up as to which would be the larger, the first result or 
the second. Again it is like tossing a coin 50 times and observing 
the number of heads obtained. Theory predicts that we should 
expect to get close to 25 heads. 

A surplus or a deficit of seven heads would be rather rare. 
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Figure 4. Histogram of 100 analyses for magnesium 
15 - 

10 - 

5 -  

Scale values are in thousandths of one per cent 

€ 
62 63 64 65 66 67 68 69 70 71 72 73 

A surplus or deficit of ten heads would be most unusual. A 
surplus of 15 heads would make most of us very suspicious about 
the fairness of the coin or the improper skill of the one tossing it. 
Thus we cannot ascribe this large preponderance of plus differ- 
ences to mere chance. But how can we account for it? First of 
all, we note that when the second measurement is subtracted 
from the first measurement the average difference, taking ac- 
count of the sign, is +0.0022. This together with the fact that the 
first entry for each pair was run as a group supplies the clue to 
the mystery. 

Evidently something happened to the apparatus between 
doing the first group of 50 and the second 50 determinations. 
Apparently between the first and second runs there was some 
small shift in the apparatus or environment and this introduced 
a bias. As a result the apparatus began to give lower results. 

The surprising fact is that the suspect high value of 0.082 was 
made in the second run and is larger, not smaller, than its com- 
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Table 7. Difference between duplicate determinations of magnesium. 
First duplicate minus the second duplicate. Entries show the number 
of plus and minus differences. The four zero differences have been 
divided between plus and minus. 

difference 
0.000 
0.00 1 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.010 

plus 
2 
5 
8 
7 
5 

2 
a 
- 
- 
2 
1 

Total 40 
- 

minus 
2 

3 
2 
1 

1 

- 

- 

- 

- 
1* 

10 

*The asterisk identifies the difference associated with the suspect measurement 
0.082. 

panion first determination of 0.072. This large difference is ten 
units off in the wrong direction from the +2.2 average differ- 
ence. (We multiplied the average difference by lo00 to drop 
the zeros.) The 50 differences listed in Table 7 are exhibited as 
the histogram at the top of Figure 5. The large difference of ten 
units of the wrong sign is crosshatched. It stands apart and 
furthest removed from the average difference of +2.2. It should 
be evident by this time that not only is the 0.082 an out-of-line 
high value but also that it is responsible for the largest difference 
of any of the 50 pairs -and of the wrong sign. Surelv these facts 
justify the deletion of this result. The single first determination 
is left to represent the seventh test point on bar No. 50. 

Before you conclude that we are being fussy about a small 
error, remember we are showing that mistakes do occur. Some- 
times mistakes tip the scales of judgment one way or the other. 
We are all prone to lapses in technique. Therefore we need to 
be prepared to search for questionable values. 
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Figure 5. 
between the duplicates shown in Table 7. 

Upper histogram shows distribution of the 50 differences 
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Lower histogram shows distribution of the 50 differences found between 
randomly selected the pairs drawn from Table 6. See also Table 8. 
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Histograms and the Error of Measurement 

The analysts doing this work very wisely planned to do the 
determinations in two complete groups. Suppose that the first 
group of 50 determinations had consisted of duplicate analyses 
of the first five test points on each bar. The consequence would 
have been to make test points six through ten appear to be lower 
in magnesium than test points one through five. Thus there 
would have been real doubt about the homogeneity of the 
alloy sample. However, the plan used by the analysts kept the 
comparison between test points fair. Each of the 50 test spots is 
represented in the first 50 determinations and again in the 
second 50. 
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We still have not answered the question in the mind of the 
experimenters who made these determinations. We want to 
know if the stock of material, as represented by these 50 spots 
actually tested, is acceptably uniform to serve as a standard for 
testing other samples of magnesium alloy. To answer this ques- 
tion we must know whether the differences between spots can 
be ascribed to the measurement error or whether they represent 
real differences in magnesium content. If the values of differ- 
ences found between determinations on different spots are 
similar to the values of the differences found between duplicates 
on the same spot, we would be satisfied with the uniformity. 
There may be minute differences in concentration of magne- 
sium at the various test spots. Clearly they are not important if 
the variation in concentration is considerably less than the error 
of measurement, i.e., the error inherent in the technique. 

The question is, how do we determine which of these alterna- 
tives is the case? A direct test may be made in the following 
way. Write the numbers 1 to 50 on 50 cards and s h d e  them 
well. Cut the deck of cards in two places and read the two 
numbers. These correspond with a pair of test spots. Copy one 
determination for each number, but make sure that both are 
either first or second determinations. Can you explain why? 
Repeat this process 50 times. How many possible pairs are there 
to choose from? 

Suppose you cut the cards and turn up numbers 19 and 33. 
Look back to Table 6 and read the values opposite these num- 
bers, making sure you take readings from the same set of 50. 
If you select the first run of 50 (-the five left-hand columns), 
the values would be 0.070 (for number 19) and 0.069 (for 
number 33). Subtract the second value from the first to obtain 
a difference of +0.001. Replace the cards, s h d e ,  and cut again. 
This time you cut numbers 30 and 46. Still using the first set 
of 50 determinations, you find the values 0.064 and 0.070. This 
time the difference is -0.006. Continue until you have 50 dif- 
ferences in any pattern. If duplicates turn up, cut again. 
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Table 8. Differences between fifty pairs of determinations picked at 
random from fifty spots subject to the condition that both members of 
the pair are from the same group of fifty. Difference is equal to the first 
member of the pair minus the second member of the pair. 

difference 
0.000 
0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.010. 

plus 
1 
9 
4 
2 
3 
5 
2 
- 

minus 
1 
7 
4 
4 
2 
3 

2 
- 

- 
- 
1 

Total 26 24 

When this game was actually tried, it produced the results 
shown in Table 8. These results are represented in the histogram 
at the bottom of Figure 5. If we compare the two histograms, 
we see that they are spread over nearly the same width and are 
remarkably similar in form. The histogram for the duplicates is 
displaced to the right 2.2 units as a consequence of the shift in 
readings between the first and second groups of measurements. 
This shift does not change the form or width of the diagram. 

The displacement in the top histogram exists because the 
average for the first set of 50 results is 2.2 units higher than the 
average for the second set of 50 results. The duplicate spots 
selected for the bottom histogram were alwzys chosen from the 
same 50 results (either the first 50 or the second So) so if we 
take the sign into account, the average difference should be zero. 

You may verify this statement by subtracting 2.2 units from 
each of the 50 differences listed in Table 7 and making a third 
histogram which shows the differences corrected for the shift. 
So, regardless of the shift, the width of the top histogram truly 
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represents the error of the measurement. Now, the plan of work 
has eliminated the shift error from the comparison of test points 
with the result that the shift error can also be excluded. 

Duplicate determinations were made on the same spot so 
there could have been no actual change in magnesium concen- 
tration, only changes as a result of measurement error. The dif- 
ferences arising from comparing different parts of the bars are 
shown in the lower histogram of Figure 5. This histogram is 
about the same width as the top histogram for duplicates. If, on 
the other hand, there had been a marked variation in magne- 
sium concentration in the rod, the differences between determi- 
nations from different locations would have exceeded the dupli- 
cate differences. Hence we see that since the determinations 
made on different parts of the bar agree about as well as repeat 
determinations made on one spot, we conclude, therefore, that 
the bar is homogeneous enough for our purpose. 

The experiment just discussed is comparatively simple as 
experiments go. Nevertheless the interpretation of the data 
required a good deal of care. What have we learned that will 
guide us in future measurements? First, we see that no matter 
what we measure or how we measure it, we will always require 
a knowledge of the measurement error itself. We have learned 
that shifts in the apparatus may occur and that we can protect 
the experiment from such shifts by a proper plan of work. 
Visible, too, is the general similarity in shape between the histo- 
gram for the magnesium analyses and for the measurements on 
paper thickness. We also devised quite a useful method of 
testing whether the concentration of magnesium varied more 
from test point to test point than could be accounted for by the 
error in the measurement itself. This procedure can be adapted 
to a large variety of measurements. 

The similarity noticed in the general shape of the ‘histograms 
for paper measurements and for spectrographic chemical analy- 
ses was not accidental. Whether the measurements are approxi- 
mate or very precise the shape persists. Nor does it matter 
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whether the measurements are in the fields of physics, chem- 
istry, biology, or engineering. 

The histogram in Figure 6 was made from the results obtained 
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pumps tested by inspectors. 

Histogram showing cubic inches of error in 923 gasoline 



when 102 laboratories tested samples of the same batch of 
cement. This was done to track down the source of disagree- 
ment between tests made by different laboratories. From the 
histogram made from the data it is clear that a few laboratories 
were chiefly responsible for the extremely high and low results. 

All states and many cities provide for the regular inspection 
of gasoline pumps to ensure that the amount of gasoline deliv- 
ered stays within the legal tolerance for five gallons. From these 
tests a large amount of data becomes available. Remember that 
the manufacturer first adjusts the pump so that it will pass 
inspection. Naturally the station owner does not want to deliver 
more gasoline than he is paid for. A small loss on each transac- 
tion over a year could be disastrous. However, the pump itself 
cannot be set without error; nor can the inspector who checks 
the pump make measurements without error. 

The scatter of the results exhibited by the histogram in 
Figure 7 reflects the combined uncertainty in setting and check- 
ing the pump. In this group of 923 pumps only 40 had an error 
greater than one per cent of the number of cubic inches (1155) 
in five gallons. This was the amount pumped out for these tests. 

Some extremely fine measurements are displayed as histo- 
grams in Figure 8. These have to do with a redetermination of 
the gravitational constant g (the acceleration due to gravity) 
in Canada. The procedure involves timing the fall of a steel bar 
and measuring the speed with which it falls. To time the bar’s 
fall, a light beam and photoelectric cells are used. As the bar 
drops, the light beam is reflected from precisely placed mirrors 
on the bar and signals the photoelectric cells. These precisely 
timed signals measure with great accuracy how fast the steel 
bar is falling. Thus the acceleration due to gravity is calculated. 

The scientists, in the course of exploring possible sources of 
error in their work, made 32 measurements with each of two 
different bars. Inspection of the histograms shows a good deal of 
overlap of the results with the two bars. The average for bar 
number 1 is 980.6139 cm./sec. 2, and for bar number 2 is 980.6124 
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Figure 8. 
to gravity at Ottawa, Canada. 

Two groups of 32 measurements of the acceleration due 
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cm./sec.*. The difference between these averages is about 15 
parts in almost ten million. The bars agree to almost one part 
in a million. Small though this difference is, the evidence leads 
to the conclusion that there is a real difference between the 
results with the two bars. The typical shape of the histogram 
appears again in these superb measurements. 

Your author, in his younger days, was a research chemist in a 
biological research institute. The experiments carried out there 
often required substantial collections of plants. But even when 
plants are started at the same time, in the same soil, and grown 
on the same bench in the same greenhouse, they vary a great 
deal in their growth. The biologists always asked the greenhouse 
staff to start more plants than would be needed. When an 
experiment was started, the biologist would pick out a supply of 
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plants with very closely the 
same growth. The extremely 
small and large plants would be 
discarded. Usually some plants 
were used for controls a n d  
others given various experi- 
mental treatments. It was an 
advantage to begin each experi- 
ment with a stock of fairly uni- 
form plants, so that control and 
treated plants would start off 
even. 

The Normal Law of Error 

In experiments of this type 
great care must be taken to 
avoid personal bias in selecting 
experimental and control plants. 
If extra-good plants are uncon- 
sciously assigned to a particular 
treatment the experiment cer- 
tainly will be biased. 

Suppose there are 50 plants to 
be divided into five groups of 
ten plants. One group will be 
used as controls; the other four 
groups are to be assigned to 
treatments 1, 2, 3, and 4. How 
shall the groups be formed? Pre- 
pare a deck of 50 cards. Mark C 
on ten of the cards, mark 1 on 
ten more, and so on. Shuffle the 
deck thoroughly. Arrange the 50 
plants in a row and deal out 



Figure 10. 

The normal law of error. 

the deck of cards as you move down the row. Chance, not 
unconscious personal bias, determines the outcome. There are 
many variations of this technique of assigning the plants to 
the control and treatment groups. Unless precautions are taken 
at this stage, the most searching study of the data may still 
lead to incorrect conclusions. We will never know for sure 
whether the performance of the best group is really the result 
of the experimental treatment, or because it was favored in 
the assignment of the plants. 

One day, just before the stock of plants was about to be culled 
of the very small and very large ones, a simple experiment was 
tried. The smallest plant in the lot was singled out and placed at 
the left end of the bench. Then the largest plant was placed at 
the opposite right end. There was room for 15 plants between. 
A selection of 15 plants was made that provided a regular in- 
crease in size from the smallest to the largest plant. This took a 
little while, but finally a satisfactory “scale” was established 
along the edge of the bench. A summer high school assistant 
was assigned the task of “matching up” the remaining plants 
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with the 17 plants used to establish a scale of size. The pots 
were placed so that lines of plants of the same size extended 
back toward the center of the bench. When the sorting was over, 
what do you think the arrangement of the plants looked like? 
A picture of the arrangement is shown as Figure 9. The assist- 
ant, who had never heard of histograms, had arranged the plants 
in the familiar shape we have been finding for our histograms of 
paper measurements, magnesium determinations, and measure- 
ments of g. 

If we drew a curved line over the histograms that we have 
examined so far, we would find that the curves would be sym- 
metrical about their mid-points and have long tails on either 
side. A curve of this type is shown in Figure 10. The equation 
which determines the height of this curve and its extent on 
either side of the mid-point is known as the normal law of error. 

Only two constants are needed to determine the height and 
width of this curve. These two quantities, which make it pos- 
sible to construct a curve representing a histogram, can be cal- 
culated from any collection of data. We seldom go to the trouble 
of actually constructing the curve. Generally, we make direct 
use of the two constants which, together with statistical tables, 
are sufficient to interpret most collections of data. The equation 
for the constants is one of the great discoveries of science. Its 
importance in bringing meaning to collections of observations 
can hardly be overestimated. 

Your author has a small printing press for a hobby. He set in 
type his opinion of the importance of the normal law of error. 

THE 

N O R M A L  

L A W  OF ERROR 

STANDB O U T  I N  THE 

EXPERIENCE O F  M A N K I N D  

AB ONE O F  THE BROADEBT 

OLNERALIZATIONS o r  NATURAL 

P H I L O S O P H Y  I T  BERVEB AS THL 

Q U l D l N O  I N B T R U Y E N T  I N  REBEARCHLO 

IN THE PHYSICAL A N D  BOCIAL BCIENCES A N D  

IN Y L D l C l N E  AORICULTURE A N D  LNOlNEERlNO 

IT  IB A N  INDIBPENBABLE T O O L  FOR THE ANALYSIS A N D  THE 
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5 Mathematics 
of measurement 

Y this time we should be familiar with the construction and B appearance of histograms. We now follow up the idea that 
a particular type of equation can be written for the curve that 
can be made to fit these histograms. This equation, called the 
normal law of error, is an exponential one of the form 



Do not let the formidable appearance of this equation 
alarm you; y and x are simply the y axis and x axis coordinates. 
You are already familiar with the constant, r, the ratio of the 
circumference of a circle to its diameter. The constant e with 
a value of 2.7183 is the base of Napierian, or natural logarithms. 

The other constants, p (mu) and u (sigma) depend on the 
experiment. For a given experiment P and o are fixed numbers, 
but their values are generally not known. In fact, the main 
purpose of an experiment is often to find out what these values 
really are. In that case the data from the experiment is used 
to provide estimates of their value. 

Estimates of these two quantities are given the symbols m 
and s. Together with the mathematical tables for the values 
of x and y based on the equation above, these estimates are 
used universally both for routine measurements and the inter- 
pretation of research data. 

One of the histograms used to represent the data obtained 
in the study of the acceleration due to gravity is shown in 
Figure 11. Superimposed on the histogram is the graph of the 
normal law of error constructed or “fitted to the histogram 
by using the estimates of p and u calculated from the data. 
I hope you will agree that the curve is a good approximation 
to the outline of the histogram. The successful fitting of the 
normal error curve to the data using just two numbers justifies 
finding what these two numbers are and how to calculate them. 

We know how to calculate one of them. This is the estimate, m, 
which is our old friend the arithmetic average of the data under 
a different name. This estimate is about as close as we can 
come to finding the true value of the constant P in the question. 

Recall the measurements you made on the thickness of paper. 
It seems reasonable, does it not, to assume that there is a real 
but unknown value for the thickness of the paper? The value 
of the constant is a quantity that is made up of the unknown 
true thickness of the paper plus any biases arising from using 
an imperfect scale in an individual manner. The distinction may 
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Figure 11. Normal curve 
of error fitted to histo- 
gram of measurements 
made in a study of the 
gravitation constant. 

seem unnecessary but it is important to understand that p is 
not the “true” thickness of the paper. Rather, p is the value 
that the average, m, tends to approximate more and more 
closely as the number of measurements is increased. Of course, 
we hope that p is very close to the true value. Nevertheless p 

is utterly dependent on the error of the scale and on any bias 
in using the scale. We found that two individuals - each using 
his own scale - obtained averages that disagree substantially 
no matter how many measurements are made. Each individual 
apparently has his own p. The true value for the thickness is 
indeed an elusive quantity. 

The Estimate of Sigma 

The second quantity calculated from the data is an estimate 
of u, the standard deuiution. This estimate of u is given the 
symbol s; it determines the width of the normal error curve. 
Turn back to Figure 10 and examine the curve sketched there. 

You will observe that if we drew a vertical line through the 
highest point on the curve, the curve would be symmetrical 
about it. The vertical line or the high point of the curve repre- 
sents the value of the average for the data. It is customary to 
use this vertical line as a reference point for marking off mul- 
tiples of the standard deviation to the right and to the left. 
You will also see that when we have proceeded as much as 
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three standard deviations on either side of the center line, the 
curve has dropped to about one per cent of its height at the 
center. Table 9 gives the ordinates ( y values) for the curve at 
k multiples of the standard deviation on either side of the mean. 
The table also gives the fraction of the area inclosed by any 
chosen pair of ordinates. Suppose that we take the location of 
the average to be the zero point, and we erect an ordinate at 
-1 standard deviation and another at + 1 standard deviation. 
By referring to Table 9 we see that 68.27 per cent of the total 
area under the curve is incIuded between these two ordinates. 
Ordinates erected at plus two standard deviations and minus 
two standard deviations include 95.45 per cent of the area. 
Similarly, ordinates at 2.57 standard deviations inclose 99 per 
cent of the area. We have observed how the curve approxi- 
mates the outline of a histogram. Histograms are based on the 
number of measurements found in the chosen intervals. So we 
may use the above percentages (and others taken from Table 
9) to obtain an indication of the expected per cent of the meas- 

Table 9. Ordinates and areas for the normal curve of error 
x values 
given in 

multiples, k, 
of the 

standard deviation 

* 0.00 
0.25 
0.50 
0.75 
1 .oo 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

y values 
given in multiples 

of 
1 I standard deviation 

0.3989 
0.3867 
0.3521 
0.301 1 
0.2420 
0.1826 
0.1295 
0.0863 
0.0540 
0.03 17 
0.01 75 
0.0091 
0.0044 

per cent of area 
included between 

ordinates 
at - k3 

and + kg 
0.0000 
0.1974 
0.3829 
0.5467 
0.6827 
0.7887 
0.8664 
0.9 199 
0.9545 
0.9756 
0.9876 
0.9940 
0.9973 



urements that will fall within any given interval on the hori- 
zontal scale expressed in terms of the standard deviation. 

Calculating I 

In order to express an interval on the horizontal scale in 
terms of s, the estimate of u, we must first calculate the value 
of s in terms of the units actually employed for the measure- 
ments. The formula for s is: - 

n - 1  

Capital sigma, 8, indicates a s u m  -in this case -of d2, the 
squares of differences obtained by subtracting the average m 
for each measurement. Suppose we represent n measurements 
by the symbols XI, X Z ,  X8, . . . , Xn. Then the average is found by 
adding the measurements and dividing the s u m  by n. 

Finding s is simply a matter of substitution, as shown in Table 10. 
But, in spite of the simple arithmetic, we are ieading up to 

a truly remarkable generalization. We claim that in most sets 
of measurements, and without regard to what it is that is being 
measured, about two out of three measurements will diger 
from the average by less than one standard deviation. Similarly, 
about 19 measurements out of 21) will be within two standard 
deviations of the average. Only one measurement in one hun- 
dred can be expected to depart from the average by more than 
2.57 standard deviations. Furthermore, these statements apply 
to the most varied sorts of measurements, whether they are pre- 
cise or approximate. This property of the normal error curve 
is of great value for the interpretation of data. 
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Table 10. Calculating s, the estimate of the standard deviation 
measurement average difference square of difference 

dl 

x2 m x2-m=d2 d2 

x3 m x3 - m = d3 d3 

X1 m x 1  - m = dl 

Xn m Xn - m = dn dn2 

Sum of squared differences = 2d2 

n-1 

We will illustrate the calculation of the standard deviation 
by using five made-up measurements. 

square of 
difference 

from average 

measurement 
minus average measurepent 

27 5 25 
26 4 16 
23 1 1 
19 -3 9 
15 -7 49 

Tota I 110 0 100 
Average 22 

- 

Now we can substitute the values in the equation and solve 
for s. The sum of the squares of the deviations from the average 
is 100. Divide this sum by one less than the number of meas- 
urements (5  - 1 = 4 )  and obtain 25 as the quotient. The square 
root of 25 gives 5 as s, the estimate of the standard deviation. 

The differences between each of the measurements and their 
average can now be expressed in multiples of s. All we do is 
divide by 5, i.e., by the estimate of the standard deviation. 
These differences become l.Os, 0.8s, O . b ,  -0.6s, and -1.4s. 
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Three of these five differences are less than one standard devi- 
ation and that is as good a check on the theoretical 68.27 per 
cent as can be obtained with so few measurements. 

We cannot say with confidence that the actual value of u 
is close to the estimate five when so few measurements have 
been used to calculate s. In order to get a really satisfactory 
estimate of s we like to have at least 30 measurements, but there 
are many experiments in which it is not possible to get this 
many. In dealing with problems when the measurements are 
few in number, however, a special allowance has to be made 
for the uncertainty of our estimate of s. 

It is not actually necessary to fit the curve to the data. Recall 
the 95 measurements made on the thickness of paper used in 
a book. If m and s are determined for this collection, the ex- 
pected number of measurements in each interval can be cal- 

Figure 12. Solid line outlines actual histogram, dotted 
line outlines calculated histogram for measurements on 
the thickness of paper. 
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dated directly. These calculated values are shown in Figure 
12 as a dotted-outline histogram superimposed over the actual 
histogram. The predicted values obtained by calculation con- 
foxm fairly closely to the counts made on the measurements. 
Thus we see that either the curve or the histogram may be 
computed by using only two estimates calculated from the 
original data or from the data grouped into intervals. On the 
other hand, having s and m we can get a very good picture of 
the measurements without doing either. 

Consider carefully what we have achieved in the way of 
condensing many measurements to a more useful form. First, 
the 95 measurements were sorted into eleven intervals. The 
mid-values of these intervals, together with the number of 
measurements in each interval, replaced the 95 measurements. 
This procedure in itself often makes for a very substantial 
reduction in the space required to report the data. The data 
may be reported either graphically as a histogram, or in brief 
tabular form of two columns; one column listing the mid-values 
of the intervals, the other showing the number of measurements 
for each mid-value. As a second step, the histogram or con- 
densed table can be replaced by just two numbers, m and s, 
which permit us to reconstruct the original histogram, although 
the reconstruction is not perfect. The advantage is that the 
entire collection of 95 measurements has been reduced to just 
two numbers which convey the information spread over the 
95 measurements. 

We may summarize the above remarks by saying that the 
standard deviation is a direct measure of the variation exhibited 
by the measurements. Earlier we used the range as an indica- 
tion of the spread from the largest to the smallest result. Why 
abandon such a simple quantity as the range in favor of the 
standard deviation which required more work to compute? 

As we pointed out at the time, to a considerable extent the 
range also depends on the number of measurements in the 
collection. Study the following two statements about two oper- 
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ators, each making 50 measurements of the same kind. Operator 
A, who makes his measurements in sets of ten, has an average 
range of 18 units, while Operator B, making sets of four meas- 
urements, has an average range of 14 units. Which one has 
the measurements with the wider histogram? Let’s consider 
the problem for a moment. We see that the sets of ten are 
more likely to include extreme values than the sets of four. 
Thus if Operator B had selected sets of ten measurements, in- 
stead of four, his average range would have been increased by 
50 per cent. It would have been 21, not 14, units and he would 
have the wider histogram. If the range is used - and it some- 
times is for quick work - comparisons will be misleading unless 
the size of the collection is kept constant. 

Using the Standard Deviation 

The standard deviation does not suffer from the limitation 
just mentioned for the range, the number of measurements in 
the collection being automatically allowed for in the formula. 
Furthermore, the standard deviation uses all the measurements, 
while the range uses only the two extreme results. 

The standard deviation - our estimate of sigma - is a very 
useful number indeed. First of all, it must never be forgotten 
that it describes the scatter of individual measurements around 
the average. Suppose our collection consists of 96 measurements. 
We might divide the 96 values by lot into 24 sets, each with four 
measurements. Take the average for each set of four measure- 
ments. We now have 24 averages. If these averages were given 
to someone without his being told that they were averages, he 
might calculate a standard deviation for them. 

Can we predict fairly closely the result of this calculation, 
knowing the value for s that we obtained from the 96 individual 
readings? The answer is that we can, and by a simple operation. 
We just divide our estimate, s, for the individual measurements 
by the square root of four, the number of measurements used in 
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Table 11. Form for calculating the standard deviation. Data taken from 
Table 2 

mid-value 
of interval 

(from Table 2) 
times 101 

659.5 
679.5 
699.5 
719.5 
739.5 
759.5 
779.5 
799.5 
819.5 
839.5 
859.5 

Totals 

mid-value 
of i nterva I 
minus the 
average 

d 
-112 
- 92 
- 72 
- 52 
- 32 
- 12 

8 
28 
48 
68 
88 

number 
in 

the 
interval 

f 
1 
2 
0 

10 
12 
18 
24 
14 
8 
4 
2 

product: 
difference 

by 
number 
f x d  

-112 
-184 

0 
-520 
-384 
-216 

192 
392 
384 
272 
176 

square 
of the 
differ- 
ence 
d’ 

12544 
8464 
5184 
2704 
1024 

144 
64 

784 
2304 
4624 
7744 

product: 
(diff.)l 

by 
number 

12544 
16928 

0 
27040 
12288 
2592 
1536 

10976 
18432 
18496 
15488 

f xc f  

95 

n - 1  

0 136320 

= ,/ 1450 = 38* 

Note:The sum of the fourth column should be zero. This provides us with a check 
on the values of d. 

*Carry square root extraction to two figures. 

each average. Since the square root of four is two, we see that 
the 24 averages will be spread over about one half the range of 
values found for the individual measurements. More generally, 
the average of n measurements will be assigned a standard 
deviation equal to s divided by the fi. Often the standard 
deviation of an average is given the label standard error. 

The examples given in the last two chapters showed that no 
matter how carefully a measurement is repeated, the results 
obtained in a series of measurements are spread over a range of 
values. The actual width of the distribution of the measurements 
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varies with different types of measurement, with the care used, 
and with the quality of the equipment. Intuitively, we conclude 
that the width of this distribution gives us some clue as to how 
closely we may have approached the correct value for p. 

Clearly if the measurements stay within a narrow band of 
values we feel more confidence in our technique of measure- 
ment than when the measurements are distributed over a wide 
range of values. Suppose that a class of seventh grade students 
made some measurements on the thickness of paper and calcu- 
lated the standard deviation for their collection of measure- 
ments. Also, suppose a senior class in high school made measure- 
ments on the thickness of the same paper and calculated their 
standard deviation. Which class do you think might have the 
smaller standard deviation? It seems plausible that additional 
maturity and experience would enable the senior class to make 
more precise measurements. The histogram for the senior class 
might be narrower than the one made by the junior class. The 
magnitude of the standard deviation for each class provides us 
with mathematical measurement for comparing the two histo- 
grams. In fact, if we use the standard deviation, we need not 
construct histograms to compare the two sets of measurements. 

Finding an s for Our Measurements 

Now let us undertake toealculate the estimate of the standard 
deviation of the collection of paper measurements given in 
Chapter 3. By sorting the actual measurements into eleven 
classes in Table 3, we have already greatly simplified the num- 
ber work of finding the average. Sorting into classes makes an 
even greater saving in arithmetic when calculating s. The arith- 
metic is shown in Table 11. This short cut gives a numerical 
result for s that is slightly different from the one obtained by 
using ungrouped data. The slight difference, however, is of no 
consequence. In Table 11 the mid-values and the average taken 
from Table 2 are temporarily multiplied by 10,OOO. This serves 
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to get rid of the decimals and a lot of zeros right after the 
decimal point. When we get our answer we simply divide it by 
10,OOO to put the decimal point back where it belongs. Thus our 
answer, 38, is really .0038. This temporary multiplying by 10,000 
greatly reduces the chance of numerical error. 

The arithmetic in Table 11 is a bit time consuming but not 
difficult. The average, 771.5, is subtracted in turn from the 
eleven mid-values. The difference is squared and multiplied by 
f ,  the number of measurements in the interval. The sum of the 
squares of these differences is 136320. After substituting in the 
formula for the standard deviation, this leads to a value for s of 
38 or 0.0038 after putting back the decimal point. Remember 
that s is not 0, the standard deviation, but only the best estimate 
we can obtain from these data. However, from here to the end 
of the book we will use the terms s and u interchangeably. 

You are now in a position to test an earlier claim made for 
the standard deviation -that about two out of three measure- 
ments will differ from the average by less than one standard 
deviation. We found that the 95 measurements of paper thick- 
ness had an average value of 0.07715. Now add to and subtract 
from the average the value 0.0038 which we found for the 
standard deviation. The result is a lower limit of 0.07335 and 
an upper limit of 0.08095. These two limits are just one stand- 
ard deviation away from the average. If you now turn back to 
Table 2 in Chapter 3, you may count up all the measurements 
that fall between these two limits. The number of individual 
values between these limits is 66. Thus 69.5 per cent of the 
95 measurements fall between these limits, and this checks in 
a very satisfactory manner the theoretical percentage of 68.3 
(Table 9). Two standard deviations amount to 0.0076. When 
this quantity is added to and subtracted from the average, we 
obtain the upper limit, 0.08475 and the lower limit, 0.06955. 
The per cent of the measurements expected to fall within these 
limits is 95.4. Therefore we should expect 4.6 per cent of the 95 
measurements to be outside these limits. This gives 4.4 measure- 
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ments. Examination shows that just five measurements in the 
collection are beyond these 20 limits. 

Although this collection of measurements did not quite fulfill 
the requirements of complete independence, we find that the 
standard deviation can be used to predict the number of meas- 
urements included in any chosen interval centered on the 
average. 

We take data in the hope that we can get the answer to a 
scientific question. We want to know whether or not our data 
provide a satisfactory answer to the scientific question we had 
in mind. Suppose that someone were doing a project that in- 
volved the effect of plant hormones on plant growth. One of 
the things he might want to know is, how large are the leaves 
of the treated plants? If it seems worthwhile answering the 
question, measurements will be made in an attempt to get a 
satisfactory answer. Of course, one can simply take the average 
of the measurements and report this. But in general, such an 
answer is not adequate in scientific investigations. 

Student’s t 

At the very least, it would seem, we should think about what 
might happen if we repeated the set of measurements. Suppose 
this were your project and you’did repeat the set and got a 
second average. By this time you are prepared, I trust, to find 
that there would be some difference between the, two averages. 
What should we do in such a case? You may reply that you would 
report a grand average based on the two averages. But you 
should not conceal the fact that there was a difference between 
the two averages. The simple fact is that if only the first set of 
measurements had been taken, a repeat of the work will give a 
different answer. The essential question is “How different?” 

It appears that it is not quite enough just to report averages. 
Something is missing. We would like to make a statement, if 
possible, that would give some idea of how close our estimate m 
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has come to the value p. It would be nice if we could say that 
our average m does not differ from I.L by more than some small 
amount that we shall call A, the Greek letter delta. Now we 
can not say this and be absolutely sure of being right. We can 
pick a A large enough so that we may have a fairly high degree 
of confidence that our statement is correct. However, we would 
like to keep A small and still keep our confidence high. 

The statement we make has to be based upon the data we 
have obtained. The indispensable element in making any state- 
ment of confidence in our average is s, our estimate of the stand- 
ard deviation. We have already seen that tables based on the 
normal law of error make it possible to make statements about 
the per cent of measurements that fall in an interval centered 
on the average. Our problem now is somewhat different but 
closely related. The estimate of o tells us how much the individ- 
ual measurements deviate from the average. Our present prob- 
lem is to make a statement about the average and its closeness 
to p. The more measurements in the collection, the better the 
chance that the average will lie close to LC. There is one way to 
obtain p with absolute confidence. That would be to make an 
infinite number of measurements. Since we will always have 
some limited number of measurements, the chances that aver- 
ages of small collections coincide with p are extremely remote. 
So let us now study this problem of making a statement about 
our average that will somehow relate the average to p. 

For a long time many investigators did not attempt to make 
any statement about the average, particularly if the average was 
based on very few measurements. The mathematical solution to 
this problem was first discovered by an Irish chemist who wrote 
under the pen name of “Student.” Student worked for a com- 
pany that was unwilling to reveal its connection with him lest 
its competitors discover that Student’s work would also be ad- 
vantageous to them. It now seems extraordinary that the author 
of this classic paper on measurements was not known for more 
than twenty years. Eventually it was learned that his real name 
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was William Sealy Gosset ( 1876-1937). 
Suppose we had a collection of n measurements where n may 

be as small as two. We know how to calculate the average, 
m, and s, the estimate of u. We now calculate the quantity, A. 

S 
A = t  - 

When A is added to and subtracted from the average, this 
gives an interval which may or may not include within it the 
unknown II for which our average, m, is an estimate. We are 
already familiar with all the symbols in the formula for A except 
for the multiplier t. This number is known as Student’s t and is 
obtained from tables first published by Student. 

Suppose we have only four measurements and we desire to 
have a 50-50 chance that the limits determined by our A enclose 
p. Student found that in this case the proper value for t is 0.765. 
If we had eight measurements, the proper value for t would be 
0.711. Observe that t is smaller with more measurements as is 
only reasonable. More measurements give a better average and 
a better value of s. 

Suppose we wish to increase our chance from 50 per cent to a 
higher probability that our limits include P. If we want to 
increase the chance that the interval includes the unknown p, 

we must make the interval wider. To raise the probability to 
90 per cent (nine chances out of ten), t must be increased to 
2.353. Table 12 is a brief table of t. Inspection shows how the 
value of t depends on a number of measurements and the 
desired confidence that the interval includes p. 

The first column in Table 12 is headed “Degrees of Freedom” 
and not “Number of Measurements.” Observe that if we have 
only two measurements each measurement differs from their 
average by the same amount. If we know one difference, we 
know that the other difference must be the same. 

If there are three measurements, the three differences from 
their average must sum up to zero if we take the sign into 
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account. Consequentl?, if we are told the values for two of the 
differences, the third difference is easily found. We can see that 
the number of independent differences from the average is one 
less than the number of measurements. The niimber of inde- 
pendent differences is called degrees of freedorn. 

Table 12. A brief table of t. 

degrees of 
freedom 

1 
2 
3 
4 
5 
6 
7 

15 
30 
99 
tL 

.50 

1 .ooo 
,816 
.765 
.741 
,727 
,718 
.711 
.69 1 
,683 
.676 
674 

probability 

.90 .95 

6.314 12.706 
2.920 4.303 
2.353 3.182 
2.132 2.776 
2.015 2.571 
1.943 2.447 
1.895 2.365 
1.753 2.131 
1.697 2.042 
1.660 1.984 
1.645 1.960 

.99 

63.657 
9.925 
5.841 
4.604 
4.032 
3.707 
3.499 
2.947 
2.750 
2.626 
2.576 

By calculating A \\re can set limits above and below the aver- 
age for a set of data with some confidence that p lies within this 
interval. The width of the interval enclosed by these limits 
depends on the value we find for s, on the numlxr of measure- 
ments, n, and on the degree of confidence that we wish to have 
that these limits enclose p. Naturally every experimenter would 
like to have these limits as close to nz as possible and still have 
high confidence that 

The expression 
p is included. 

S 
A = t y  

v' n 
shows quantitatively how the limits depend upon the standard 
deviation and the number of measurements made. 

There are two ways by which an experimenter can narrow 
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these limits. First of all, he may increase the number of meas- 
urements. This soon becomes unprofitable because we can see 
from the formula for A that the effect of increasing the number 
of measurements depends on the square root of the number of 
measurements. Thus increasing 100 measurements to 200 has 
a negligible effect. Obviously the most efficient method of nar- 
rowing the limits enclosed by plus and minus A is to make the 
numerator, s, smaller. That is the goal of every experiment - 
and the art of measurement. 

With a small set of measurements, say four, we may calculate 
A for the 90 per cent or even the 99 per cent limits. We have no 
way of knowing for sure that these limits actuully do include P 

in any giuen case. On the average, i.e., nine times out of ten or 
99 times out of 100, such limits will include p .  We will proceed 
now to try out this technique and see how well it works. 

We return to the 95 measurements made on paper thickness. 
Again we simplify matters by multiplying each value for thick- 
ness by 10,OOO to get rid of all the decimal points and zeros. 
Write these 95 values on 95 cards. After shuffling the cards, deal 
out four of them and consider this a set of four measurements 
that might have been made. Calculate average m and s for the 
four measurements. Then calculate for 50 per cent limits 

S S 
A = 0.765 - = 0.765 - 6 2 

Subtract A from the set average and add A to the set average. 
We can now say that there is a 50-50 chance that these limits 
include p. 

What is y. for this investigation? We really don’t know, but 
95 is a rather large number and, therefore, the average, m, will 
probably be a close approximation to p .  Thus, it is fairly safe to 
use m for P in this experiment. The average is 771 and we may 
note whether or not the limits we compute do include 771. 

Now shuf3e the deck again and deal our another four cards 
and consider these to be another set of measurements. (Be sure 
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to return the first four cards before you shuffle them.) Repeat 
the computations as before and observe whether or not these 
new limits for this second set inclose 771. We may continue 
this process to find out if about half the sets have limits which 
inclose 771. 

You may not want to undertake all this arithmeticso I have 
done it for you for 20 sets of four measurements each. In Table 13 
I have tabulated for each set its average, its standard deviation, 
and A for 50 per cent limits of confidence, and the limits deter- 

Table 13. Calculation of 50 per cent and 90 per cent limits for twenty 
sets of four measurements drawn by lot from the 95 values in Table 2. 
All values in Table 2 have been multiplied by ten thousand. 

set 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

set 
ave. 

767 
772 
793 
764 
776 
782 
780 
785 
803 
774 
784 
753 
759 
769 
789 
794 
749 
799 
774 
762 

m 

set 
S.D. 

s 

7 
33 
13 
14 
25 
25 
22 
26 
46 
21 
38 
33 
20 
19 
33 
33 
57 
23 
19 
52 

A =  
0.765 Z 

3 
13 
5 
5 

10 
10 
8 

10 
18 
8 

15 
13 
8 
7 

13 
13 
22 

9 
7 

20 

V T  

50% 
limits 

7 64-7 7 0 * 
759-785 
788-798* 
759-769* 
766-786 
772-792* 
772-788* 
775-795* 
785-82 1 * 
766-782 
769-799 
740-766* 
751-767* 
762-776 
7 7 6-802 * 
781-807* 
727-771 
790-808* 
767-781 
742-782 

A =  
2.353 S 

\/a 

8 
39 
15 
16 
29 
29 
26 
31  
54 
25 
45 
39 
24 
22 
39 
39 
67 
27 
22 
61 

90% 
limits 

759-775 
733-81 1 
778-808* 
748-780 
747-805 
753-81 1 
754-806 
754-816 
749-857 
749-799 
739-829 
7 14-792 
735-783 
747-791 
750-828 
755-833 
682-8 16 
7 7 2-826 * 
752-796 
701-823 

'Values marked with an asterisk did not bracket the grand average of 771. 
Note: 0.765 and 2.353 are values of t taken from Table 12. 
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mined by A. An asterisk marks those limits which do not include 
771. There are twelve sets with asterisks instead of the expected 
10. That is not 50-50, is it? Tossing a coin should give heads or 
tails on a 50-50 basis. Still we would not be too surprised to get 
as many as 12 heads (or tails) out of 20 tosses. These 20 sets 
provide a reasonable verification of our claim. 

The last two columns of Table 13 show the 90 per cent limits 
calculated by using t = 2.353. There are only two asterisks in 
this column marking those sets whose limits did not include the 
grand average 771. This time we have hit it exactly. Nine times 
out of ten the limits inclosed the average that was based on a 
large number of measurements. 

We have gone a good way beyond merely reporting an aver- 
age. We can now attach to an average a pair of limits corre- 
sponding to some chosen confidence that the limits will inclose 
P. These limits reveal the quality of the measurements and guard 
us against making undue claims for our average. 

Suppose we think of the 95 measurements as constituting one 
large set out of many large sets of 95 measurements that might 
have been made. It is easy to set up limits around the average 
of the 95 measurements. The number of measurements, n, is 
now 95. Let us select 90 per cent limits. The appropriate value 
for t may be taken from the next to the last line of Table 12. 
This is the line for 100 measurements, not 95. But there is very 
little change in t as n becomes larger. Consequently we may 
use the value 1.66, to calculate A as follows: 

38 
A = 1.66 --- - 8.5 d= 

The value 6.5 is subtracted from and added to 771 to get the 
limits 764.5 and 777.5. We may convert these back to millimeter 
units by dividing by 10,OOO and obtain the values 0.07645 and 
0.07775. The interval between these two limits is a bit more 
than one thousandth of a millimeter. A statement that the thick- 
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ness is probably between 0.076 mm. and 0.078 mm. is much 
more useful than reporting an average of 0.077 mm. without 
any limits to indicate how uncertain the average may be. 

The above computations of A were made on the assumption 
that the 95 measurements were independent. We found previ- 
ously that some of the girls appeared to have individual biases. 
A more conservative view of these data would be to consider 
that we had just 24 measurements, one from each girl. Naturally 
this would be the average for each girl. You may find it inter- 
esting to calculate limits using the 24 averages and taking 
n = 24. The limits will be somewhat wider. 

There is still another important way the standard deviation 
is put to work. Consider two samples of paper that appear to be 
of much the same thickness. Are they? How could you detect a 
difference between them and substantiate your claim? Or, how 
could you say that there is no difference in thickness? Using the 
technique of measuring a stack of sheets, you could obtain four 
measurements for each paper. A set of such measurements is 
shown in Table 14 together with the numerical operations. 

Our purpose is to determine whether these data provide sub- 
stantial evidence of a difference in thickness between the two 
papers. We must remember that even if we find that the differ- 

Table 14. Thickness measurements on two papers; the measurements 
have been multiplied by 10,000. 

paper diff. square 
A from ave. of diff. 

772 -7 49 
759 -20 400 
795 16 256 
790 11 121 

Total 3116 0 826 
Ave. 779 
Average for A minus average for B = 31 
Combined sum of squares of the differences = 

paper 
B f 

765 
750 
724 
753 

2992 
748 

diff square 
rom ave of diff 

17 289 
2 4 

-24 576 
5 25 

0 894 

826 i- 894 = 1720 
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ence between the two papers apparently does not exceed the 
error of measurement, we still have not proved the papers are 
equal in thickness. We could make more measurements on each 
paper. This would give more stable averages and thus might 
make the evidence for a diflerence more convincing. On the 
other hand, there is no point in doing a lot of work if it appears 
that the difference is too small to be of any practical importance. 

Inspection of the two sets of measurements in Table 14 shows 
that the largest determination of thickness in set B is larger 
than the smallest in set A, and that the measurements overlap. 
This suggests that the two papers may, indeed, be of equal 
thickness. The difference between their averages is 31. 

Decisions and Confidence 

Our problem now is to determine whether 31 represents a 
real difference between the averages, or whether it arises simply 
through the errors in measurement. 

If the two samples of paper are of equal thickness, the differ- 
ence between them would be zero. One way to solve our prob- 
lem would be to-calculate a limit, A, with some chosen degree 
of confidence and see whether zero is included in the range 
between 31 plus A and 31 minus A. 

The two sets of measurements have been made by the same 
observer using the same equipment, and therefore should have 
the same u. Each set provides an estimate, s, of u based on four 
measurements. We will combine the two individual estimates 
of u into one estimate in the following manner. 

Add together the two s u m s  of squares of the differences to 
get 1720. Divide this s u m  by 6. And where does the 6 come 
from? If we were determining s for each set, our divisor would 
be 3, ( n  - 1). Since we are looking for s of the combined 
measurements we use the sum of the divisors which is 6. So we 
have g m - =  17. This gives a combined estimate of the 
standard deviation for this method of measurement. The prob- 
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lem is to find the correct s for the difference between two aver- 
ages of four measurements. Differences increase the s by the 
factor fl, and averages reduce s by l/<n where n is the 
number of measurements in each average. The s to use for A is 

We will use this number (already divided by fi) to set up 
limits around the observed difference of 31. 

What value of t shall we use? We need values of t for six 
degrees of freedom, the divisor in our estimate of s. That is, 
there are three degrees of freedom from each set of four meas- 
urements, making a total of six of freedom altogether. So we 
turn back to Table 12 and select values for t with six degrees 
of freedom for the 90,95, and 99 per cent probabilities. 

prob. 90% 95% 99% 
t 1.943 2.447 3.707 

A = S X f  23.3 29.4 44.5 
Upper limit 54.3 60.4 75.5 
Lower limit 7.7 1.6 -13.5 

The limits are obtained by adding s X t to 31 and subtracting 
s X t from 31. 

If we pick a probability of 95 per cent we will use a value 
for t that will, 95 times out of 100, give limits that include the 
true value of the difference. In this case we use t = 2.447 and 
get the calculated limits around the average of 60.4 and 1.6. 
We notice that the range 1.6 to 60.4 does not include zero, i.e., 
no difference between the papers. Thus we can conclude, with 
95 per cent confidence, that there is a real difference in thickness 
between the papers. Strictly speaking, what we have shown is 
that there is only a small probability (five per cent) that we 
would obtain a difference as large or larger than 31 if the papers 
were, in fact, of equal thickness. Consequently we would give 
up the assumption of equal thickness. 

Another investigator might be more cautious about claiming 
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to have shown a difference between the papers. He elects to 
work at the more conservative level of 99 per cent probability. 
In this event his report indicates limits from -13.5 to 75.5. 
Zero is a possible value between -13.5 and 75.5, so he is un- 
willing to report that there is a difference at the 99 per cent 
level of confidence. The choice lies with the investigator, and 
the importance of the decision greatly influences his choice of 
a level of confidence. Additional measurements pay off in reduc- 
ing the standard deviation of the difference between the aver- 
ages. 

There is an extremely important comment to make about this 
comparison of the thickness of the papers. The diference in 
thickness is not influenced by any bias that may happen to 
afflict aZZ the measurements. Suppose there was a bias + B  in 
the values obtained. This bias will appear in both averages, 
making each average too large by +B. Consequently the differ- 
ence between the averages is just what would have been found 
if the measurements had no bias at all. Comparative measure- 
ments have this enormous advantage over absolute measure- 
ments such as the determination of the gravitation constant, g. 
Indeed, it is possible to measure and compare the differences 
between the gravitation constants at two latitudes much more 
accurately than the constant can be determined at any one 
latitude. 

Measurements and the Work of Scientists 

The work of the scientist is tremendously aided by having 
available very careful measurements on certain standard sub- 
stances. For example, a chemist who has prepared a new liquid 
organic compound may be interested in the viscosity of this 
new substance. Using very simple apparatus, the viscosity can 
be determined by comparing it with the viscosity of water. 

The viscosity of water has been very carefully measured. One 
way to determine the absolute viscosity is to measure the time 
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required for a given volume of water to flow through a capillary 
tube of known diameter and length under a given pressure. I t  
is quite an undertaking to establish all these quantities. But if 
equal volumes of water and the test liquid are compared in 
identical capillaries under identical conditions of temperature, 
it is only necessary to measure the time of flow of each liquid 
and the specific gravity of each liquid. Thus the viscosity of the 
new compound can be obtained relative to the viscosity of 
water. When carefully performed, such a comparison is prac- 
tically free from bias. Of course any bias in the viscosity value 
assigned to water will be carried over in the value assigned to 
the new liquid. For this reason the very greatest care is taken 
in establishing the values of the physical constants for certain 
reference materials. 

What we have been examining is a small part of the theory 
of measurements. The role of the computations we have just 
made is to give the investigator an objective basis for making 
statements about his experimental results. 

You may find all this mathematics pretty tiresome and not 
nearly as much fun as assembling your apparatus and getting it 
to work properly. And you may ask, “Is it really necessary to go 
into all these complications?” There are three alternatives, all 
of which have been widely used in the past and are still used 
to some extent today. These alternatives are: 

1. Arbitrarily make the limits ridiculously wide 
2. Guess at the limits 
3. Ignore the whole matter of giving your fellow scientists 

a measure of the quality of your work. That is, just report 
averages without any limits. 

You will agree, I hope, that these alternatives come in a poor 
second to a piece of work well done and supported by a standard 
deviation and the narrowest possible limits at the highest pos- 
sible level of confidence. 
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6. Instruments for 
making measurements 

ou may now appreciate why scientists would like to reduce Y experimental errors in their measurements to the point 
where they could be ignored. One way to reduce error is to use 
better instruments. In the paper thickness study we used only 
a simple metric scale. This may be replaced by a vernier caliper 
similar to the one shown in Figure 13. The stack of paper can 
be caught between the jaws of this instrument so there is no 



need to hold one end of the scale on one edge of the stack. The 
other advantage - a big one - comes from the auxiliary vernier 
scale, named after the French mathematician Pierre Vernier 
( 1580-1637). 

The auxiliary vernier is a short scale which divides nine 
divisions on the main scale into ten equal parts. Each whole 
division of the auxiliary scale equals nine tenths of a main-scale 
division. The auxiliary scale is used to estimate the tenths of the 
millimeter. Move the auxiliary-scale zero up to the position on 
the main scale that is to be estimated. In Figure 14 this position 
is between 11 and 12 mm. To find the tenths directly, run your 
eye along the scale until j'ou find a mark on the main scale in 
line with a mark on the auxiliary scale and read the auxiliary 
scale, The reading is 11.2 mm. Can you prove that this scheme 
is sound? 

As an example of the usefulness of the vernier caliper, con- 
sider the set of measurements made on paper thickness shown 
in Table 15. The agreement for thickness per sheet is so good 
in the fourth place that estimates can be given to the fifth 
decimal place. In this set of measurements the s for the thick- 
ness per sheet is 0.00015, one twentieth of the 0.0038 obtained 

Table 15. Measurements on paper thickness with a vernier caliper 

number of thickness thickness 
sheets mm. per sheet 
215 20.0 0.09302 
184 17.1 0.09293 
146 13.6 0.093 15 
120 11.2 0.09 33 3 
103 9.6 0.09320 

Average = 0.09313 
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by students using a millimeter scale. The vernier caliper makes 
it much easier to compare the thickness of two papers. Notice, 
too, how the standard deviation provides a measure of the 
improvement. 

Still further improvement could be obtained with the microm- 
eter, shown in Figure 15. This is a more elaborate vernier and a 
standard piece of equipment for precision machine work. The 
shop version reads directly to thousandths of an inch, and tenths 
of a thousandth may be estimated. 

Before we leave the five measurements on paper thickness 
made with the vernier caliper, let’s try another way of looking 
at them. If a graph is constructed and the actual thickness of 
each stack is plotted against the number of sheets per stack, the 
five points should - in theory - lie in a straight line through the 
origin of the graph. Actually, the points will not lie exactly on a 
line because of small errors in the measurements. We may ask, 

Q 
Figures 13 and 14. Ob- 
jects to be measured 
with the vernier caliper 
are held between the 
jaws.  Approximate 
reading is made on 
main scale, and read- 
ings to nearest tenth 
are made in auxiliary 
scale shown in detail 
at right. 
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Figure 15. With micrometer, 
measurements can be made 
directly to thousandths of an 
inch and estimated to ten 
thousandths. 

why should we expect them to do so? 
The equation for a straight line through the origin is y = bx 

where b is the slope of the line. (Slope is the constant that 
defines the rise of y values in terms of the increase of x . )  The 
increase in y for one additional sheet on the stack gives the 
slope. Therefore the slope is an estimate of the thickness of the 
paper. 

The Method of least Squarer 

One part of the mathematics of measurement deals with get- 
ting the best fit of a line (or curve) to a set of points. What is 
meant by “best fit”? We can explain fitting a line in terms of 
the arithmetic average which we accept as the best single num- 
ber to represent a collection of data. Consider three possible 
measurements; 13, 8, and 9, represented by the average, 10. 
The differences between the three measurements and the aver- 
age are 3, -2, and -1. The sum of the squares of these differ- 
ences is 14. If any number other than ten is used to get the 
differences, the sum of their squares becomes larger than 14. 
The arithmetical average is the number that makes the sum of 
the squares of the differences a minimum. 

Suppose that rather than using the average to represent this 
set, we use 9, the middle or median number. The differences 
then are 4, -1, and 0. The sum of the squares of these differ- 
ences is 17. The graph in Figure 16 shows that the sum of the 
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squares of the differences has a minimum value when the aver- 
age is chosen to represent the entire collection. You should 
confirm the graph shown in Figure 16. Perhaps you can give a 
general proof. 

Now let us see how we can use this generalization to interpret 
a collection of measurements. For our example we will try to 
find the equation of a line that best fits the plot of the thickness 
of a stack of paper against the number of sheets per stack. Our 
data will be the vernier readings taken from Table 15. If we let 
y equal the thickness of the stack in millimeters and r equal the 
number of sheets per stack, our problem becomes one of con- 
sidering the various values of b in the equation y = bx. 

Suppose that we arbitrarily take b as equal to 0.09. Substitut- 
ing this value in the equation makes it possible to calculate the 
thickness, y, for any given number of sheets. 

(no. sheets) (0.09x) (thickness in mm.) (obs. y-calc. y) 
103 9.27 9.6 +.33 
120 10.80 11.2 + .40 
146 13.14 13.6 +.46 
184 16.56 17.1 + .54 
215 19.35 20.0 + .65 
All the calculated values for y are below the observed values; 

without doubt the coefficient b has been given too small a value. 
The sum of the squares of the differences between observed y 
and calculated y is 1.1946. By analogy with the arithmetic aver- 
age, it seems that if we found a'value for b that would make the 
sum of the squares of the differences a minimum, we would 
have a line that best represents the collection. This procedure 
is frequently used and it is called the method of least squares. 
We could cut and try various values of b, but this is trouble- 
some. There is a formula that gives the desired value of b 
directly for lines that pass through the origin. 

X calculated y observed y difference 
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Multiply each x by its corresponding observed y and sum up 
the five products (11764.8). Square each x and sum the five 
squares ( 126406). The ratio of these two sums gives b for a line 
through the origin. The value found for b is 11764.81 126406 = 

0.09307. The equation can now be written y = 0.09307~. The 
graph for this equation is shown in Figure 17. The new set of 
calculated y’s and their differences from observed y’s show a 
much improved fit. 

103 9.586 9.6 +.014 
120 11.168 11.2 +.032 
146 13.588 13.6 +.012 
184 17.125 17.1 -.025 
215 20.010 20.0 -.010 

The sum of the squares of these differences has gone down to 
0.002089. This sum of squares also leads to an estimate of the 
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Figure 17. Thickness of paper 
stack plotted against number 
of sheets of paper per stack. 
The equation is 4 =O.O9307x. n 
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Number of sheets 100 200 

standard deviation of the measurement of the width of the stuck. 
The constant b plays the role of the arithmetic average in our 
earlier calculations of s. The estimate, s, of the standard devi- 
ation is 

Since our measurements were recorded only to the nearest 
tenth of a millimeter, we probably were rather lucky to get 
this small s. 

If you are sharp eyed you may have noticed that the value 
0.09307 for the slope b (the thickness per sheet) is a little less 
than the average given in Table 15. This is due to the fact that 
the average in the table gives equal weight to each measure- 
ment, while the thicker stacks get more weight in this calcula- 
tion for the slope. 
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Figure 18. Dotted line through 
origin is poor fit to plotted 
points. A line not forced to go 
through origin gives better fit. 
intercept on y axis reveals 
amount added to data. 

Number of sheets 100 200 

Which is the better estimate - the average or the slope? The 
slope is, if we assume that the error of measurement is not 
influenced by the thickness of the stack. If this assumption is 
true, the calculations of thickness per sheet should be more 
reliable for the thicker stacks. The arithmetic average ignores 
this advantage of the thicker stacks. Usually, however, the dis- 
crepancy in the two estimates is unimportant unless the stacks 
vary greatly in thickness. 

As an exercise, try adding one millimeter to all the y values 
actually observed. That is, imagine that all these measurements 
are biased by +l  mm. The graph and fitted line (the dotted 
line) for the adjusted data are shown in Figure 18. What is the 
slope of the line? The line, in an effort to compromise since it 
must go through the origin, runs below the points near the 
origin and above the points farther out. Even the eye can see 
that a line not forced to go through the origin would be a better 
fit to the points. This line has an intercept on the y axis at about 
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one millimeter. An incorrect zero setting for the vernier caliper 
would make all results high (or low ) , and thereby introduce a 
constant error. Perhaps the above discussion will suggest to you 
one way to detect a constant error or bias. 

One major concern in all refined measurements is the cali- 
bration of the instrument. Little good would come from care- 
fully reading fractions of a scale division if the instrument itself 
is in error. The sad news is that errors in the instruments are not 
revealed by repeated measurements. If a thermometer is in 
error by half a degree when read at 25" centigrade, this error 
will not be eliminated by taking the average of many readings 
all estimated to tenths of a degree. All the readings will have 
this hidden constant error. There are two ways around this 
dilemma. One way is to have a thermometer checked by a com- 
petent testing laboratory. The laboratory will supply a certifi- 
cate that gives the corrections to be applied at periodic points 
along the thermometer scale. 

Another way to reveal constant errors is to have one or more 
similar instruments. One thermometer is used and then replaced 
by another thermometer. If readings are divided among two or 
more thermometers, inconsistencies among the thermometers 
will ultimately be revealed. Id two vernier calipers are available, 
each should be used for half the readings. We may find, just as 
we did for the magnesium analyses and for the measurements 
on g discussed in Chapter 4, that there is a difference between 
the two sets of readings. 

Very often this sort of check on instruments can be intro- 
duced into experiments without adding appreciably to the labor. 
If the instruments are in agreement there is, of course, the pos- 
sibility that both instruments are in error to the same amount 
and of the same sign. This coincidence is generally regarded as 
unlikely; so agreement between sets of measurements made by 
using two or more instruments gives us confidence that constant 
errors of appreciable magnitude in the instruments are not being 
overlooked. 
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An Instrument of Your Own 

One way to learn about instruments at first hand is to make 
one. We have chosen a simple one, so that you can easily make 
two or three and compare them. Back in 1887, Captain Andreas 
Prytz, a Dane, invented a very simple instrument for measuring 
the area of an irregular plane figure. We all know the formula 
for the area of a square, rectangle, triangle, and circle. But sup- 
pose we need to get the area of a leaf or an irregularly shaped 
plot of land. The outline could be traced or drawn to scale on 
graph paper and the number of squares counted. 

The measurement of irregular areas is very important in engi- 
neering. There are instruments that trace the rise and fall of 
pressure in an automobile cylinder throughout the piston stroke. 
The area under the pressure curve must be measured. This 
information is needed to evaluate the performance of the en- 
gine. Civil engineers laying out modern highways use their 

Figure 19. Irregular areas can be measured with polar planimeter. 
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transits to determine the profile of a hill. From this profile the 
engineer w d  be able to compute the quantity of earth that must 
be removed. But first, he will need to measure the area enclosed 
by the profile of the hill. In technical and engineering work 
irregular areas are measured by a beautiful and expensive in- 
strument called the polar planimeter. See Figure 19. 
You will have to make your own planimeter. The hatchet 

planimeter invented by Captain Prytz can be made very quickly 
from a piece of coat hanger or other stiff wire. From the lower 
straight portion of a coat hanger cut a piece about 30 centi- 
meters long. File one end flat and straight across, similar to the 
base on a right cylinder. File the other end to a tapered but 
very slightly rounded point so that it will not scratch paper. 
The blunt end is then hammered out to a hatchet shape. The 
rough wedge shape should be filed until a sharp arc-shaped edge 
is formed on the blade as shown in Figure 20. 

Now comes the only part requiring care. Bend down about 
five centimeters of the hatchet end at right angles. Be most 
particular to have the edge of the hatchet in the same plane as 
the long piece. Then bend down five centimeters of the pointed 
end so that it is parallel to the bent-down hatchet end. The 
hatchet planimeter looks like a very low, very wide letter U. 

One preliminary test of this planimeter may be made by 
drawing it along a straight line. Place hatchet and point on the 
line. Hold the planimeter vertical’by the pointed end and draw 
the point along the line. The hatchet should follow and stay on 
the line or very nearly so. 

If the instrument performs satisfactorily in the first test, test 
it on simple figures of known areas. A circle of four-centimeter 
radius or an equilateral triangle seven centimeters on a side 
will serve nicely. Graph paper is especially useful in this experi- 
ment. Tape two sheets end to end. Draw the figure to be meas- 
ured on one piece and rest the hatchet end of the planimeter 
on the other piece. 

The measurement is made by picking a point close to the 
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center of the area to be meas- 
ured. Draw a straight line from 
this point to the perimeter. 
Place the pointed end of the 
planimeter on the center point 
of the figure and the hatchet 
end on the other sheet of graph 
paper. Generally it is conven- 
ient to have the hatchet, the 
pointed end, and the line to the 
perimeter all in line and coinci- 
dent with one of the rulings on 
the graph paper. Now press the 
hatchet end down so that it 
makes a faint but definite mark 
on the paper. Hold the plani- 
meter upright by the pointed 
end and move the point along 
the line from the center out to 
the perimeter. The hatchet 
should track along the graph 
paper ruling. Now trace the out- 
line of the figure and return to 
the center point. Let the hatchet 
end follow as it will; do not 
force it. When the pointed end 
is back at the center, press down 
the hatchet to make another 
indentation in the graph paper. 

The area of the figure is com- 
puted by multiplying the dis- 
tance between the two indenta- 
tions by the distance between 
the two arms of the planimeter. 
The hatchet end will have been 
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displaced sideways, i.e., at right angles to its original position. 
The displacement can be read directly from the graph paper. 
If the distance between the two arms is also measured by the 
graph paper, the area can be given in whatever units the graph 
paper is ruled. The area of a circle or rectangle is also easy to 
get in square graph paper units. 

Repeat the measurement by going around the figure in the 
opposite direction. You will find the hatchet is displaced in the 
direction opposite to that in the first trial. The displacements 
may disagree. Probably this is because hatchet blade and point 
are not in perfect alignment. Use the average of the two tries 
as your answer. Repeat such complementary pairs until you 
have a series of estimates of the area. Be sure to prepare a good 
form on which to record your data. Determine the error for 
this method of measuring the area. Refer back to Chapter 5 
for the formulas. 

One rather satisfying thing about this experiment is that the 
areas of regular figures drawn on the graph paper are known 
fairly exactly - much more so than the homemade planimeter 
measures them. So for all practical purposes, we know the 
true area. Consequently we can discover if our planimeter has 
a “constant” error. Does it always miss by about the same 
amount and of the same sign? 

We can in effect “calibrate” this simple instrument. Cer- 
tainly it would be appropriate to investigate two or more sizes 
of area and two or more shapes of area. The results of such a 
calibration study are indispensable in any serious effort to 
determine the area of some very irregular-shaped area. You can 
see that mere agreement between repeat tracing on the irreg- 
ular area does not protect you from some constant error. By 
testing the instrument and your technique of using it on at least 
two different, regular figures of known area, you can detect 
hidden constant errors. 

Sometimes it is not easy to have a reference item that is 
accurately known so you can check yourself. If you make a 
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second planimeter, you will probably find some difference 
between the sets of measurements made with the two plani- 
meters. The discrepancy between the two sets is a direct warn- 
ing that there are other errors in addition to those revealed by 
the scatter of the measurements, all made with the same plani- 
meter. Every investigator who is trying to get very accurate 
data is confronted with exactly the problems you face in 
calibrating a homemade planimeter. 

We are now at the point where we see that the error in a 
measurement may be a complex matter. First we studied the 
variation among repeat measurements. We learned to compute 
the standard deviation as a measure of the variation among 
the measurements. 

Precision, Accuracy, and Truth 

The deviations of the individual measurements from their 
average determine the precision of the measurements. These 
deviations do not reveal either bias or constant error that may 
be present in every one of the measurements. Scientists try to 
arrange their experiments so that the precision, or standard 
deviation, is the only source of error they need to worry about. 
This is often achieved by comparing one or more test items 
with some reference material of known values. 

Thus if someone, with much labor, has measured very 
accurately the thickness of a stack of paper, a sample of this 
paper may be compared with a paper of unknown thickness. 
The difference in thickness found between the reference paper 
and the unknown paper is added to (or substracted from) the 
value assigned to the reference paper. The only error to con- 
sider here is the precision error, since any bias in the measure- 
ments does not affect the difference between the two papers. 

The scientist who undertakes to establish the correct thick- 
ness for the reference paper faces a more difficult problem. 
Possible biases now become a matter of real concern, and a 
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great deal of effort is required to detect such biases and elim- 
inate them as far as possible. The object is to arrive at an 
accurate value - one that is close to the true value. 

The term accuracy involves the error as measured from the 
true value, not as scatter measured around the average of the 
data. Even if we knew the true value, it is most undesirable 
to take the differences between the individual measurements 
and the true value. The differences should always be taken from 
the average of the data. The t tables only apply when the 
standard deviation is calculated by using the average. The con- 
stant error is revealed by the daerence between the average 
of the measurements and the true value, if one is lucky enough 
to know the true value. Notice that good precision is required 
to detect small constant errors. 

Table 16. Different values reported for the Astronomical Unit (values 
1-12, from SCIENTIFIC AMERICAN, April 1961) 

source of A.U. in experimenter's 
number measurement millions estimate of 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

and date 

Newcomb, 1895 
Hinks, 1901 
Noteboom, 1921 
Spencer Jones, 1928 
Spencer Jones, 1931 
Witt, 1933 
Adams, 1941 
Brower, 1950 
Rabe, 1950 
Millstone Hill, 1958 
Jodrell Bank, 1959 
S. T. L., 1960 
Jodrell Bank, 1961 
Cal. Tech., 1961 
Soviets, 1961 

of miles 

93.28 
92.83 
92.91 
92.87 
93.00 
92.91 
92.84 
92.977 
92.9148 
92.874 
92.876 
92.9251 
92.960 
92.956 
92.8 13 

spread 

93.20 -93.35 
92.79 -92.87 
92.90 -92.92 
92.82 -92.91 
92.99 -93.01 
92.90 ' - 92.92 
92.77 -92.92 
92.945 - 93.008 
92.9107 - 92.9190 
92.873 - 92.875 
92.871 - 92.882 
92.9166 - 92.9335 
92.958 - 92.962 
92.955 - 92.957 
92.810 - 92.816 
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The standard deviation and the constant error should be 
reported separately. Quite different remedies are required to 
improve the precision and to reduce constant errors. Both tasks 
challenge the skill of the experimenter. The experimenter finds 
it very useful to have some means of demonstrating that im- 
provements in the measurement technique have been achieved. 
Our discussion is only an introduction to the mathematical 
treatment of the errors in measurements. 

A particularly revealing compilation of measurements made 
since 1895 of the value of the Astronomical Unit (average dis- 
tance of the earth from the sun) is shown in Table 16. The 
table reveals a spread of values reported by the astronomers. 
This spread refers to the precision of the work and is not a 
measure of accuracy. The “best” value reported by a later 
worker is often far outside the limits assigned by an earlier 
worker. 

Make a graph by taking the number of the measurement as 
x and the reported value as y. The scale on the y-axis should 
extend from 92.70 to 93.20. You will see that the later values 
show much better agreement with each other than those in the 
early part of the century. We have here an impressive demon- 
stration of the increasing refinements of the measurement 
process. Man is never satisfied. Men will always strive to 
achieve one more decimal point as they seek to penetrate deeply 
into the nature of the universe. 
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7. Experiment with 
weighmg machmes 

NE day your author wished to demonstrate the advantage 0 of a carefully planned experiment. There had been some 
discussion about the accuracy of the weighing machines found 
in drugstores and other public places. He and three colleagues 
weighed themselves on four different machines. Each man was 
weighed on each machine. Each man read his own weight just 
once..The other three times, his weight was read by his com- 



panions. A schedule was set up so that each man’s weight was 
read by all four participants. Each man was weighed on every 
machine and each man made one reading on each machine. 
A number of questions could be answered from the 16 weights 
obtained in this investigation. 

First, the weights of the men could be compared. Second, 
the machines could be compared with one another. Third, the 
men could be compared with respect to their method of read- 
ing a scale. In particular we could discover whether an indi- 
vidual had a tendency to get consistently high or Iow readings, 
that is, whether he had a bias. 

A schedule was made by dividing a square into 16 smaller 
squares. Each column of small squares was assigned to one of 
the men. Each row of squares was assigned to a different 
machine. The sketch shows the plan at this point. 

Machine I 

Machine11 

Machine 111 

Machine IV 

Man getting weighed 

7 

I 
I 

Why did we complicate this investigation by having each 
man read his own weight only once and then have it read the 
other three times by his companions? This device prevented 
the second and following readings on a man’s weight from 
being influenced by preceding readings. If a man read his own 
weight each time, he might have been tempted to make the 
readings agree a little better with each other than was actually 
the case. So, as part of the experiment, the readings recorded 
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by any reader were not revealed until the experiment was over. 
This made sure that we had four readings for any one man’s 
weight by four different readers, none of whom knew what 
the others had put down. 

This foresight, which added nothing to the work, had one 
other important consequence: if a man had a reading bias and 
he read his own weight each time, this bias would enter into 
his own average and into no other average. The difference 
between the average weights for two men would include their 
reading biases. An arrangement for each man to read the 
weights of all four men eliminates this source of error from the 
comparison of the weights. 

The problem was how to enter in the proper box the initials 
of each individual who was to make the reading. Each man was 
to read once every man’s weight, including his own, and to make 
one reading on each machine. Clearly each man’s initials must 
appear in all four rows and in all four columns. There are 576 
ways in which this can be done. An arrangement of this kind is 
called a Latin square. The particular Latin square used in this 
experiment is shown in the next sketch. 

Machine I 

Machine I1 

Machine I11 

Machine IV 

J.C. C.D. M.D. J.Y. 

J.Y. M.D. C.D. J.C. 

C.D. J.C. J.Y. M.D. 

M.D. J.Y. J.C. C.D. 

- 

The initials in each square designate the man who made the 
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reading for the particular machine and man associated with that 
column. We see that J.C. read his own weight on machine I, 
and read the weight of J.Y. on machine 111. 

The plan was not yet complete. In what order should the 
men get on the scales? You may ask, “what difference will that 
make?” It should not make any difference, is the reply. When- 
ever possible we try to introduce into our experiments elements 
that are extremely unlikely to alter the results. This is done as 
a check. If it turns out that the results are altered by this opera- 
tion, there may be something wrong with the plan of the experi- 
ment, or the data. 

How were we to introduce the order of being weighed so as 
to be perfectly fair to all involved? The obvious way to be fair 
was to let each man be first once, second once, third once, and 
last on the scales just once. Furthermore - and this takes a bit 
of thinking-if a man in his role as reader should read the 
weight of a first man on the scales, then a second on, a third on, 
and a last one on, this would further even things out. Therefore, 
we assigned in each box a number 1,2,  3, or 4 which told each 
man listed at the top of each column when it was his turn to 
get on a particular scale. 

The next sketch shows this number entered in the box, and 
the weight of the man at the top of the column as it was read 
by the man whose initials are in the box. For example, the n u -  
bers tell us that when we came to machine 11, C.D. got on the 
scale first and read his own weight, next J.Y. got on the scale 
and M.D. read his weight, and so on. 

Some of the advantages of this planned experiment appear 
immediately. The average weight found for each man was a 
consensus based on all four machines. Since each man was 
weighed on every machine, the variation among the machines 
did not enter into the comparison of the weights of the men. 
That is, if a machine read two pounds too high, the machine 
introduced this increment for every man. Each man’s average 
would therefore have been increased by half a pound without 
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1 3 4 2 
J.C. C.D. M.D. J.Y. 
155.75 163.25 153.0 169.5 

4 2 1 3 
J.Y. M.D. C.D. J.C. 
156.0 164.25 153.25 171.0 

2 4 3 1 
C.D. J.C. J.Y. M.D. 
153.0 161.5 151.5 167.25 

3 1 2 4 
M.D. J.Y. J.C. C.D. 
155.0 162.75 152.25 169.0 

d 

Machine 
I 

Machine 
average 
160.4 

161.1 

158.3 

159.8 

I1 

I11 

IV 

Man Ave. 

changing the difference between the average weights for the 
men. This state of affairs is strictly true only if all the men are 
approximately the same weight. If one of the men had been 
replaced by an $0-pound boy, difficulties might have arisen. 
A machine might have given readings two pounds too high at 
160 pounds and also have given readings 1.5 pounds low at 
80 pounds. In that case all the men would have gained an extra 
two pounds and the boy would have lost 1.5 pounds. So the 
differences between the boy and the men would be altered. 

The machines, too, could be fairly compared only in the 
neighborhood of the average weight of the men. There was a 
difference of almost three pounds between the averages for 
machines I1 and 111. The highest weight for each man was given 
by machine I1 and the lowest by machine 111. Notice that for 
each machine we form the total weight of all four men. That 
the men differ in weight does not matter, provided only that 
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they are not too far removed from the over-all average of 160 
pounds. 

What about the performance of the men as readers of the 
scales? The scheme was arranged so that each reader took a 
reading on every machine and for every man. Therefore-the 
same total was put before each reader but in different combina- 
tions of machine and man being weighed. The weights read by 
J.Y. are 169.5, 156.0, 151.5, and 162.75. The total is 639.75 
pounds and the average of his four readings is 159.9. Similarly 
the order on the scales may be examined. The four weights 
associated with the number 1 include a weighing of each man, 
a reading by each man, and a weighing from each machine. 
The weights are 155.75, 153.25,. 167.25, and 162.75 and the 
average is 159.8. 

We compute the average for each reader and for the numbers 
1, 2, 3, and 4, using the data displayed in the last sketch. All 
the averages have been assembled together for comparison in 
Table 17. The men were expected to differ in their weights. 
The extreme difference between machines was 2.8 pounds. As 
readers, the men showed excellent agreement; the maximum 
dserence between readers was 0.5 pounds. This difference was 
just about the same as the 0.4 maximum difference found be- 
tween the average weight of the men when they were third on 
and their weight when they were first on the machine. As might 
be expected, there were small errors in estimating to a quarter 
of a pound, otherwise the averages for the readers would have 
agreed exactly. 

We cannot explain the differences between machines as aris- 
ing solely from reading errors. The reading error is clearly quite 
small by comparison with machine differences. It is safe to 
conclude that at least some of the machines are slightly in error. 
The maximum error in a machine, as estimated by the difference 
between it and the average of all four machines, is 1.5 pounds. 
This is not enough to worry most users of the machines. 

Can we conclude that no machine gives a weight that is off 
101 



Table 17. Averages for men, weighing machines, readers, and order 
of being weighed 

J.C. 154.9 I 160.4 J.C. 160.1 1 159.8 a 160.1 
J.Y. 162.9 I1 161.1 J.Y. 159.9 2 159.8 b 159.7 
C.D. 152.5 111 158.3 C.D. i59.6 3 160.2 c 159.9 
M.D. 169.2 IV 159.8 M.D. 159.9 4 159.9 d 159.8 

Maximum 
difference 2.8 0.5 0.4 0.4 

men machines readers order 

by more than 1.5 pounds from the truth? Certainl\. not. Perhaps 
the machines were all set by the sarne mechanic and have a 
common m” Suppose the machines were purposely all set to 
read low in order to please those who are concerned about being 
overweight. And, of course, ~ v e  have data only in the neighbor- 
hood of 160 pounds and no information for much smaller or 
much larger weights. The easy way to check the machines 
would be to get hold of some “standard” weights. These are 
weights that have been checked against the official standards 
of weight. 

The Importance of Experimental Design 

In  Table 17 there is a fifth column of averages rather mys- 
teriously labeled a, b, c, and d. Recall that we were able to 
enter the numerals 1, 2, 3, and 4 in the boxes so that there was 
a 1 assigned once to each machine, man, and reader. The same 
holds good for 2,3,  and 4. In a similar way the letters u, b, c, and 
d can be put in the boxes so that the letter a is assigned once to 
each machine, man, reader, and numeral. 

The averages for the letter a, b, c, and d ought to agree 
within the error of reading because no physical action is asso- 
ciated with these letters. The maximum difference for these 
averages is 0.4 pound. This difference is about the same as the 
maximum difference found among readers, or for order of get- 
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ting on the scales. Such a device provides good evidence that 
the averages for readers agree within the error of reading, and 
also that the order of getting on the scales did not matter. 

The placing of these letters is not shown but is left as an 
exercise for the reader. Hint: place the a’s in the diagonal 
starting at the top left corner. 

When additional symbols are entered in the Latin square, 
it is then called a Graeeo-latin square. Both are widely used in 
experimental design. A 3 x 3 square permits only four sets of 
averages; a 5 x 5 square permits six sets of averages. Curiously 
a 6 x 6 square can he constructed with only one set of symbols 
in the boxes. 

Even without formal analysis, the sixteen measurements in 
Table 17 have revealed a good deal of information. The primary 
object of the study may he consictered to have been a conipari- 
son of the men’s weights. The same data permitted a check on 
the weighing machines in regard to possible disagreement 
among the machines. The data also made it possihle to check 
on possi1,lc biases the men might have had as readers. There was 
no convincing evidence of such hiases. Thc differences among 
the men a s  readers were about thc same as the small differences 
associated with the order tlw men got on the scales, and order 
should not have had an effect. Most important, the comparison 
of the men’s weights was not impaired by disagreement among 
the machines. Neither would rending hiases have altered the 
differences found between the weights of the men. Try adding 
a small bias to any man’s readings to verify this statement. 
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8. Selection of items 
for measurement 

HE problem of getting good measurements and finding ways T to describe them concisely has been our chief concern in 
the preceding chapters. Only indirectly has there been any 
suggestion that there is sometimes a problem of picking repre- 
sentative items to be subjected to measurement. In Chapter 4, 
to determine the homogeneity of the magnesium alloy, we 
tested 50 spots on five bars chosen from 100 bars. Was this a 



fair sample? We omitted any reference to the question of 
whether the 923 gasoline pumps could be considered an ade- 
quate sample of the total collection of pumps in the country. 
Taking a large number of items does not guarantee getting a 
representative selection of the whole supply, or population. 
Many investigators have found this out the hard way. 

Before tackling the general problem of how to get a good 
selection of items for measurement, let us investigate a special 
case. Your author went to the bank and got two rolls of newly 
minted 1961 cents. For the moment, let us accept without argu- 
ment that these 100 coins give an adequate picture of the coins 
minted during the work period in which they were made. Un- 
doubtedly the coins accumulated in a big tray and got mixed 
up in the process. There is a specified weight for cents, together 
with legal tolerances for minimum and maximum weight of a 
coin. The nominal weight is 3.110 grams, with a permitted 
tolerance of 0.130 grams above and below the nominal weight. 

The problem was to determine whether or not this sample 
of 100 pennies fell within the permitted tolerance of 3.110 grams 
k 0.130 grams. To do this experiment your author had access 
to a very fine balance (see Figure 21 ) that could be read to the 
millionth part of a gram. Such precision was quite unnecessary. 
The weights were recorded to tenths of a milligram; that is, to 
the fourth place of decimals. Even that was really unnecessary. 
Weights to the nearest milligram would have been quite good 
enough. Why? 

The actual weights of the coins vary over a range of about 
250 milligrams. Weighing to the nearest milligram would surely 
be good enough since the weighing error could, at most, extend 
the range of actual weights by only a milligram or two in 250 
milligrams. The weights are correct to four places of decimals. 
How do we know that? If we reweighed the 100 coins using any 
other fine balance capable of weighing accurately to six deci- 
mal places, we would get exactly the same weights over again 
out to four decimal places. The possibility of a constant error 
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Figure 21. 
weighings to one millionth of a gram. 

This sensitive balance is capable of accurate 

common to all weights was eliminated by checking the balance 
with a standard weight. 

All the above detail is directed to establish that the observed 
scatter of the weights is not a result of errors in weighing. The 
measurement error is nil for this inquiry. An effort to determine 
whether the weights of the coins do or do not conform to speci- 
fication must depend on examining a number of coins. For this 
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purpose we need a balance good enough so that a coin will not 
be called outside the tolerance limit because our weighing intro- 
duces additional scatter into the results. There is no measure- 
ment error in the weights as recorded. The variation among the 
weights found is a property of the coins, and in no wise reflects 
measurement error. 

Table 18. Weights of new US. cents weighed on an accurate balance 

class interval 
grams 

2.9800 - 2.9999 
3.0000 - 3.0199 
3.0200 - 3.0399 
3.0400 - 3.0599 
3.0600 - 3.0799 
3.0800 - 3.0999 
3.1000-3.1199 
3.1200 - 3.1399 
3.1400- 3.1599 
3.1600 -3.1799 
3.1800 - 3.1999 
3.2000 - 3.2199 

Tota I 

number of coins in 
1st 50 2nd 50 

0 1 
1 3 
3 1 
2 2 
5 2 
9 8 
13 11 
8 9 
6 7 
3 3 
0 2 
0 1 
50 50 

total for 
100 coins 

1 
4 
4 
4 
7 
17 
24 
17 
13 
6 
2 
1 

100 

The individual weights are given in class intervals of 20 milli- 
grams for each roll of coins. These are displayed in Table 18. 
A glance at the totals in the last column suggests that the actual 
weights of the coins are distributed among the class intervals 
in very much the same manner as are the measurement errors 
on one object such as the paper thickness measurements. 

When the coins themselves were arranged in columns cor- 
responding to the class intervals, they formed a histogram that 
is indistinguishable from those exhibited in Chapter 2. We have 
here, not 100 crude measurements on one object, but one very 
careful measurement on each of 100 objects. Nevertheless the 
100 results are distributed in the same form as the normal law 
of error. 
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The same calculations that were made on repeated measure- 
ments on one object are appropriate for this collection of single 
measurements on each of 100 objects. A standard deviation may 
be calculated and the same probability statements made that 
were explained in Chapter 5. So there is no difficulty in arriving 
at a concise description of this collection of weighing. The 
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reader may calculate the average and standard deviation. Com- 
pare the average with the nominal weight, 3.110. 

Some may wonder what would be the result if these coins 
were weighed on a rather crude balance. If the balance is such 
that repeated weighing of the same object gave a standard devi- 
ation of more than 20 milligrams, the spread of the distribution 
would be substantially increased. If sc is the standard deviation 
of the coins, and S b  the standard deviation for weighings made 
with the crude balance, then the standard deviation of the 
observed weights for coins weighed with the crude balance is 
easily calculated. It is V'S~~ + s%. If duplicate weighings are 
made on each of, say, 50 coins, it is an easy matter to solve for 
both Sb and sC. We can calculate what the standard deviation 
for coins would be if they were weighed on an errorless balance. 

We delayed answering the question as to whether these 100 
coins are completely representative of the total population of 
newly minted cents. The chances are very good, of course, that 
the coins are representative of some rather short interval in the 
total annual production of cents. If we desire to report on the 
cents minted in any year, we should plan to put aside a few 
coins from each day's work. These coins should be thoroughly 
mixed and a sufficient number drawn from the collection. The 
coins are enough alike so that there is virtually no danger of bias 
or intentional selection, either for those going into the collection 
or for those drawn for weighing. 

Coins are easy to set aside and mix thoroughly. However, 
there are many cases in which it is physically impossible to do 
this. For example, bales of raw wool weigh several hundred 
pounds, and there may be hundreds in a shipment. Custom 
duties are assessed on the basis of the per cent of clean wool in 
the shipment. Since the bales vary considerably, it becomes 
necessary to sample the shipment by taking two or more cores 
from each of a number of bales. Economy of effort requires that 
no more bales be sampled than is necessary to obtain a satis- 
factory estimate of the per cent of clean wool in the entire ship- 
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ment. We have already learned one way to sample fairly. The 
bales may be marked 1 to n. Then n cards are numbered 1 to n, 
If k bales must be sampled, k cards are drawn from the carefully 
shuf3ed pack. 

Random Digits 

There is a more convenient way to attain a random selection 
without using a pack of numbered cards. You can use random 
number tables, just page after page filled with the digits 0 to 9 
put down in random order. Do not think this random order is 
easy to get. Oddly enough, very special efforts have to be made 
to avoid excessive inequalities in the frequencies of the digits 
and to avoid recurring patterns. A very small selection of 1600 
random digits is given in Table 19. 

A table of random numbers can be used in various ways. 
Suppose we wish to draw 12 bales from a shipment of 87 bales. 
The bales are first numbered 1 to 87. Now go down a column of 
paired random numbers. Start at the top left of Table 19 and 
write down pairs of digits. Omit pairs 88, 89, . . . , 90, and 00, 
because there are no bales corresponding to these numbers. We 
find the pairs 44,84,82,50,83,40,33, ( 50) ,  55,59, 48,66, and 
68. The second 50 is omitted because that bale is already in the 
sample. These are the bales to be sampled. This method avoids 
any deliberate attempt to put good, or poor, bales in the sample. 
One may start at any part of the table so there is no possibility 
of anyone’s influencing the selection. In fact every effort must 
be made to start in different places. 

If there were 302 bales, we would take the digits in triplets. 
Can you see the triplet, 441, in the two numbers 44 and 17? 
Any number from 001 up to and including 302 gets in the 
sample. There will be many numbers greater than 302. If a 
number is greater than 302 and less than 605, subtract 302 from 
it to get your number. If the number is 605 up to 901, subtract 
604 to get your number. Ignore numbers above 907. In this way 
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Table 19. Random Numbers 
4417 16 5809 7983 861962 0676 5003 10 
8416074499  8311463224  2014858845 
829777 7781 074532 1408 32989407 72 
5092261197 0056763138  8022 0253 53 
8339500830 4234079688 5442068798  

4033 2038 26 1389 5103 74 17 7637 1304 
9683 508775 9712259347 7033240354  
8842954572 1664361600  0443 186679 
3327 143409 45 59346849 12 72 07 3445 
5027 8987 19 201537 0049 52 85666044 

55 74307740 4422788426 0433460952  
59 29 97 68 60 71 91 38 67 54 13 58 18 24 76 
4855906572 9657693610  9646924245  
6637322030  778457 0329 1045650426  
6849691082  5375919330 34252057 27 

8362641112 67 19007174 6047 212968 
0609197466 029437 3402 7670903086 
3332512638  7978450491  1692535616 
4238970150  8775668141  4001749162 
9644334913 34868253 91 0052 434885 

6405719586 1105650968  7683 203790 
75738805 90 5227411486 2298122208 
3396027519  07606293 55 5933824390  
97 51401402 0402 33 3108 3954 1649 36 
1506159320 0190107506  4078788962 

22358515 13 9203515977 5956780683 
09984299  64 6171629915 06 5129 1693 
5487664754 733208 1112 4495 9263 16 
5837788070 4210506742 32 17 558574 
87593622 41 2678630655 1308270150 

7141615072  1241949626 4495273699  
2352233312 9693021839  0702 183607 
310449 6996 1047484588 13414389 20 
31997368 68 35813303 76 2430124860 
9458284136  4537590309 9035572912  

9880330091  09 77 931982 7494 800404 
7381539479 3362468628  0831544631  
73829722 21 0503 27 2483 7289440560 
2295 754249 3932822249 024807 7037 
3900030690 5585783836  9437 306932 

55 23 64 05 05 
10 93 72 88 71 
93 85 79 10 75 
86 60 42 04 53 
35 85 29 48 39 

07 74 21 19 30 
9777464480  
94 77 24 21 90 
99 27 72 95 14 
38 68 88 11 80 

68 07 97 06 57 
15 54 55 95 52 
97 60 49 04 91 
11 04 96 67 24 
40 48 73 51 92 

02 02 37 03 31 
38 45 94 30 38 
0275509598  
4851840832  
2755268962  

57 16 00 11 66 
07 52 74 95 80 
49 37 38 44 59 
47 95 93 13 30 
02 67 74 17 33 

5291057074  
58 05 77 09 51 
2956242948  
94 44 67 16 94 
15 29 39 39 43 

0296743083  
25 99 32 70 23 
97 17 14 49 17 
18 99 10 72 34 
82 62 54 65 60 

45 07 31 66 49 
53 94 13 38 47 
35 80 39 94 88 
16 04 61 67 87 
9089007633  



every number from 1 to 302 gets an equal chance to be drawn. 
Earlier in the book you were told to use cards. I must now 
confess that, instead of cards, I used a table of random numbers 
because it was less work. Besides, cards stick together. 

Most of you are aware that the census taker puts a lot of 
questions to some people, while others are asked for only a little 
information. Modern measurement theory shows that properly 
drawn small samples are quite satisfactory measures of the 
whole population. Often these small samples are even better 
than a complete count because they can be made by a few well- 
trained census takers who will make fewer mistakes. In all such 
samples, the use of random selection is absolutely indispensable 
to avoid various sources of bias in the results. This subject of 
sampling is so vast that many large volumes have been written 
on it in recent years. 
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9. Measurement of 
thread strength 

HIS chapter describes a method of measuring the strength T of sewing thread. The results will not add to our store of 
factual knowledge, but we will become further acquainted with 
the problem of making a measurement. We are going to start 
pretty nearly from scratch and make an apparatus out of easily 
obtained parts. 1 am sure you will discover just how exasperat- 
ing a piece of apparatus can be. This elementary problem drives 



home the fact that making measurements is not child's play. 
We are going to load a piece of thread until it breaks. One 

way to do this would be to tie one end of the thread to a support 
and attach a light container to the other end. Pour in sand very 
slowly and stop as soon as the thread breaks. Now weigh the 
container and contents and you have your answer. You can do 
the experiment this way if you like. Of course you will repeal 
the experiment many times in order to reveal the scatter of the 
results. What do you think causes the scatter? Is it the difficulty 
in making the measurement, or do different specimens actually 
have different strengths? 

Making a Testing Apparatus 

The method we are going to use is more complicated. The 
reason for making it more complicated is that the apparatus 
involves features found in actual test apparatus. The scheme is 
one that multiplies the weight applied to the thread by means 
of a lever. This permits testing relatively strong material with 
moderate loads. Our test device will double the load applied. 
The illustration (Figure 23) shows a stick, 52 cm. long with a 
13 cm. crossarm mounted on a wooden base. The pieces are 
joined by small right-angle brackets with the upright braced 
with a guy wire. A hook is screwed in the underside of the 
crossarm about nine cm. out from the upright. The specimen to 
be tested hangs from this hook. A small eyelet is screwed in 
near the base of the upright. Finally ten small brads are placed 
close together in a row along the edge of the baseboard and one 
more brad about 20 cm. away from the middle brad in the 
group of ten. 

Our lever is made from a short piece of coat hanger wire. 
A piece 16 cm. long will do. File a shallow notch half a cm. 
from each end. Take care to keep the notches in line. Now turn 
the wire over and file another shallow notch halfway between 
the end notches. This notch should be 180" from the other two. 
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A small cardboard box 5 x 7 cm. x 3 cm. deep can be put 
together with Scotch tape. This allows layers of six nickels to 
be placed in the box. Eight layers for a total of 48 nickels were 
used in the experiment. Strong linen thread loops are attached 
to the box. On top of the nickels rests a false cardboard bottom. 
BB shot are then added one by one until the load breaks the 
specimen. 

We are now ready to assemble the apparatus. All thread, 
other than the test specimen, is strong linen thread. The test 
specimen, 30 cm. in length, is taken from a spool of size A 
mercerized cotton thread. A loop is tied in one end of the test 
thread and the loop placed over the middle brad in the row of 
brads. The other end is doubled around the lone brad in the 
comer of the board. Hold the thread together, slip the thread 
off the brad, and tie the loop in that end of the specimen. This 
standardizes the length of the test specimen at about 20 cm. 

Take a piece of linen thread and tie loops in each end so that 
the length between the tips of the loops is about 40 cm. A 
similar piece about 14 cm. between loop tips will also be needed. 

Hang the test specimen from the hook. Slide the notched wire 
lever through the free loop and settle the loop in the center 
notch. In the notch in the end of the wire near the upright, hang 
a loop of the long linen thread. Lead the free end through the 
eyelet and place the loop over one of the brads so that the lever 
is a little high on the free end. When the load is applied to the 
other end, the test specimen stretches and the free end of the 
lever will get lower. In the notch on the free end of the lever, 
hang a loop of the short linen thread. In the other end attach a 
paper clip with an end bent out to make a hook. Hang the box 
of nickels on this hook. 

We are now ready to test the apparatus to see if it works 
properly. Add BB shot one by one until the specimen breaks. 
It should break between the loops. A break at a loop may result 
if the notch has a rough edge. The box should clear the base by 
about one cm. Too big a drop causes the BB’s to jump out 
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and perhaps be lost. Place a spool against the side of the box 
to prevent rotation. 

BB Units 

The end of the lever near the upright may be regarded as a 
fulcrum. The load is applied twice as far from the fulcrum as 
the point of support by the specimen. Hence the load on the 
specimen is doubled. The load includes the box and box con- 
tents and hook. The specimen supports the wire, but the weight 
of the wire is not doubled. Why? After you have adjusted the 
apparatus and acquired some skill in using it, you can proceed 
to measure a number of specimens. 

Nickels are used as the “standard of weight because the 
nominal weight of a nickel is five grams. The lever, supported 
by a linen thread in the center, was used as a balance to find 
the weight of the box, of the lever, and the conversion factor 
for nickels to BB’s. 

Several nickels were attached to a thread by cellulose tape and 
hung on one end of the lever. The box and accessories (but 
without nickels ) were hung on the other end. BB’s were added 
until box and contents balanced the nickels. Some more nickels 
were added and the number of BB’s were again increased to get 
balance. From these data it was easy to get the weight of the 
box in BB’s (20) and the conversion factor of 14 BB’s to me  
nickel. 

How could we get the weight of the lever? Easy. We cut 
another piece of wire the same length, notched it, and weighed 
it against box and BB’s. The weight was found to be 18 BB’s. 
All measurements were reported in BB’s. 

We have rather casually taken for granted that we managed 
to get the middle notch exactly midway between the two end 
notches. If we did not, then the factor two will not give the load 
on the specimen. We will more than double the load if the 
shorter end is near the upright, and do less than double the load 
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if the longer end is near the upright. The two ends of the lever 
were marked I and I1 so that a record could be made of which- 
ever end was near the upright. A series of tests could be run 
with the lever in one position and a second series with the lever 
reversed. Unequal division of the lever would ultimately be 
revealed by the averages for the two series. 

In thinking about this problem a bit, it appears that if two 
trials are run -reversing the lever on the second trial - the 
effect of unequal division virtually cancels out when the average 
of the two trials is taken. The trials were run in pairs and the 
results for seven pairs of tests are given in Table 20. Examina- 
tion of the 14 results shows considerable variation among the 
specimens. The seven results with end I near the support may 
be compared with the seven made with end I1 near the support. 
The technique described in Chapter 5 is appropriate. 

The average breaking strength of the thread in grams is ob- 
tained by dividing the number of BB’s by 14 to get them con- 
verted to nickels. Then multiply by five to get grams. Why 
bother with BB’s at all? Why not just use nickels? A nickel is a 
pretty big weight to drop in the box, and the shock effect would 
break the thread prematurely. The BB’s are also a convenient 
way of estimating fractions of a nickel. 

If the lever had been divided into quite unequal parts we 
would expect one member of a pair to give consistently higher 
results than the other member. End I is the higher four times, 
and I1 has the higher result three times. The high variability of 
the thread obscures the slight inequality of division. If the 
result with end I near the support is divided by the total for the 
pair, we get the seven ratios: .492, 543, .529, S42, .473, .499, 
and .557. The average of these is .5193. A t test could be run to 
see if the limits for this average include the value 0.5000. If so, 
the evidence would be insufficient to show an unequal division 
of the lever. You should also satisfy yourself that the way to 
calculate the position of the middle notch is to take the result 
with end I near the support and divide by the total for the pair. 
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Table 20. Measurement of thread strength. All weights in BB’s 
Weight: Lever = 18; Box = 20; 48 nickels = 672 

expt. 
no. 

1 

2 

3 

4 

5 

6 

7 

end at BB’s 
support added 

I 150 
I1 177 

I 257 
11 105 

I 247 
I1 144 

I 222 
11 80 

I 104 
11 196 

I 183 
I1 185 

I 299 
I1 93 

box plus 
nickels 

692 
692 

692 
692 

692 
692 

692 
692 

692 
692 

692 
692 

692 
692 

load 
total 

842 
869 

949 
797 

939 
836 

914 
772 

796 
888 

875 
877 

99 1 
785 

twice 
load 

1684 
1738 

1898 
1594 

1878 
1672 

1828 
1544 

1592 
1776 

1750 
1754 

1982 
1570 

lever 
wt. 

18 
18 

18 
18 

18 
18 

18 
18 

18 
18 

18 
18 

18 
18 

total 
BB’s 

1702 
1756 

1916 
1612 

1896 
1690 

1846 
1562 

1610 
1794 

1768 
1772 

2000 
1588 

ave. 
BB’s 

1729 

1764 

1793 

1704 

1702 

1770 

1794 

This will give the distance from end I to the middle notch as a 
fraction of the distance between the t\vo end notches. 

Aside from the fun of assembling the apparatus, we have seen 
another way in which a “constant” error can enter into measure- 
ments. If the middle point is not exactlv halfway between the 
end notches, a bias is introduced. We have seen how a proper 
program of work (reversing the lever) puts us in a position 
where we can correct for the bias easil!. and automatically. The 
data also make it possible to “test” the lever for bias at the 
same time you are collecting data to determine thread strength. 
We have also obtained some idea of how the thread strength 
varies. 

The experiment could be easily extended in scope. We used 
a standard length for the test specimen. Suppose we used a 
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specimen twice or half as long, do you think this would influence 
the results? Think carefully. You could run the tests by permit- 
ting the box to rotate and compare with tests in which the box 
is not allowed to rotate. You could try the effect on the strength 
of boiling the thread, or exposing it to direct sunlight for two 
weeks. You could compare different brands of thread or differ- 
ent colors. 

The apparatus and the technique of using it are there to serve 
whatever line of inquiry interests you. An interesting line of 
research soon diverts attention from the measurement problem 
itself. Nevertheless the problem of measurement is still there. 
Although it hardly needs to be said, men have found that good 
research depends on good measurement. 
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EPILOGUE 

I wish that I could assure you that the vast scope and variety 
of measurement problems have been revealed in this book. 
Instead, I must warn you that there is much more to the subject. 
Not all measurements are best described by the normal law of 
error. There are many special situations and distributions that 
apply to counts of radioactive particles, to seed germination, 
and to opinion polls. Other distributions are used for measure- 
ments on the fatigue failure of metal parts, and still others apply 
in the study of flood heights and in reliability studies. 

There are, however, elements common to all these distribu- 
tions. Consider the notion of unexplained variation. Apparently 
there is something subtle in the notion of random numbers and 
in using random procedures of selection. Because these concepts 
of variability and randomness are common to all measurement 
problems, they have been the major objects of our attention. 

A large part of our attention has been given to how measure- 
ments are obtained. Yet, the science of measurement, like a coin, 
has two sides to it. One side shows the ingenuity and skill of 
experimenters in devising better methods of measurement for 
their individual researches. The other side of the coin deals 
with the properties common to all measurements. While this side 
of the coin has dominated our discussions, the two sides are 
inseparable. 
As scientists explore the unknown regions beyond the present 

frontiers of science, they encounter new problems and new 
kinds of measurements. Often these data pose entirely new 
problems to the measurement specialist. Working together, 
scientist and measurement specialist push back the frontiers of 
knowledge; still the frontiers grow longer. One thing appears 
certain-there is no limit to the length of the frontiers of 
knowledge. 
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GLOSSARY 

Accuracy Refers to the discrepancy between the true value and the result 
obtained by measurement. 

Average Refers to arithmetic average, m, or mean. If n measurements have 
been made, the average is obtained by dividing the sum of all n measurements 
by n. 

Average deviation If n measurements have the average m, the sum of the 
deviations (ignoring signs ) divided by n gives the average deviation. 

Bias Refers to a more or less persistent tendency for the measurements, as a 
group, to be too large or too small. 

Deviation The difference between a measurement and some value, such as 
the average, calculated from the data. 

Class interval An arbitrarily selected interval into which measurements are 
grouped on the basis of their magnitude. 

Error In the study of measurements “error” does not mean “mistake,” but is 
a technical term denoting deviations from the average or some other computed 
quantity. Such deviations are considered to be random errors. Bias involves the 
notion of a constant error. 

Estimate A numerical value calculated from data. The average is an estimate 
of the quantity under measurement. Other parameters such as the standard 
deviation, u, are often estimated from the data.. 

Graduation mark The marks that define the scale intervals on a measuring 
instrument are known as graduation marks. 

Histogram A graphical representation of a collection of measurements. Equal 
intervals are marked off on the x axis. A rectangle is erected on each interval, 
making the heights of the rectangles proportional to the number of measurements 
in each interval. 

Least squares A mathematical procedure for estimating a parameter from a 
collection of data by making the sum of the squares of the deviations a minimum. 
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Normal law of error A mathematical equation that in many cases describes 
the scatter of a collection of measurements around the average for the collection. 

Parameter A parameter is the property or quantity that the measurements 
are expected to evaluate. The word parameter is used for the correct value of 
the property. 

Precision Refers to the agreement among repeated measurements of the same 
quantity. 

Population Refers to a group of items belonging to a well-defined class from 
which items are taken for measurement. 

Random A random procedure for selecting items from a population gives 
every member of the population equal opportunity to be chosen. 

Range The difference between the largest and smallest values in a collection 
of measurements. 

Standard deviation Estimated from n measurements by calculating 
S=J-- 2 ( dev ) 2 

n - 1  
where z (dev)z  means the sum of the squared deviations from the average. 

Standard error Sometimes used for the standard deviation of an average. It 
is equal to the standard deviation divided by the square root of the number of 
measurements used to get the average. 

Symbols 
2 = Capital sigma, summation sign 
I.L = population average, true value 
m = arithmetic average of the measurements, an estimate of p 
5 = population standard deviation 
s = estimate of 5 computed from data 
e = base of natural logarithms, a mathematical constant 

?r = ratio of circumference to diameter of a circle, a mathematical 

b = conventional symbol for slope of a straight line 
t z Student’s t ,  a multiplying factor for s used to obtain probabil- 

ity limits about the average of a collection of data. 

An agreed-upon permissible departure from specification. 

constant 

Tolerance 

Unit 
priate, well-defined unit quantity such as centimeter, volt, etc. 

Vernier 

Every measurement is expressed as a multiple or fraction of some appro- 

A mechanical aid for estimating fractions of a scale interval. 
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Age measurement .............................. 17-18 

American Society for Testing 
Materials ................................................ 29 

Archeological materials 18 

Astronomical ments ...... 94-95 
Astronomical unit .............................. 94, 95 
Atomic weights ....................................... 11 
Auxiliary vernier scale 81 
Average 30, , 87 

Balance ............. ................................ 105 

Bias ............ 39, 78, 79, 88, 98, 103, 119 

Carat 19 
Carbon ........................................................... 17 

Card-shuff ling experiment ............ 47-48 
Cement testing .. 51 
Chance, laws of ....................................... 36 
Chemica I ana lysis ............ 10- 1 1, 19-20, 

42-47, 78-79 
Chlorine ......................................................... 10 
Coi n-tossi ng experiment ..........._.. 36-38 
Coi n-we igh i ng experiment ...... 105 109 
Constant error ........... 87 

Degree ........................................................... 24 
Degrees of freedom . 

Argon ................. .......................... 21 

........................... 

Carbon dating ..... 17 

................................ 21 
.............. 1161 12 

Error ..... .................... 6, 1 1-12, 47, 49, 94 
constant ................................................ 87 
normal error curve .. 
normal law of ............ 

Experi menta t desigri .................. 102- 103 

Fever thermometers ............... 24 
Formulae ...... 56. 60. 70. 71. ,86 
Freezing point .......................................... 25 

Gasoline pump measurements ...... 51 
Gold content 

........................ 69 

........................ 51 

Hatchet planimeter 

construction ....................................... 90 
measuring with .............................. 91-92 

25 
25 

and Measures ................................... 16 
........ 32, 34, 60, 63, 71 

Latin square ............................................. 98 
Laws of chance ...................................... 36 
Least-squares method 83-86 
Limits of confidence . .... 73 

Magnesium-alloy 
experiment .............................. 42-47, 49 

Mat hemati ca I laws ................................. 22 
M 

frequencies .......................................... 38 
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need for ...................... 

units of ....................................... 10, 15-17 
uses ..................................................... 17, 78 

Measuring instruments 10, 80, 89-92 
auxiliary vernier scale .................. 81 

transit 89 
vernier caliper ................................. 81 

Median number ... 

Metric system .......................................... 16 
Micrometer .......................................... 29, 82 
Mid-values ............................................. 32, 41 

Modal interval .......................................... 33 
............................. 57, 58, 72 

Nitrogen ...................................................... 2 1 
Normal error curve .................. 58-59. 61 
Normal law of error ........................ 53-54 
Number system ....................................... 16 

Obsidian tools .......................................... 17 

Paper thickness experiment ...... 25.40. 
49.62.63.65.7 5-76 

bias ...................................................... 3 9 ~ 0  
disagreement in 

measurements ........................ 27-28 
form for recording 

measurements .............................. 26 
frequency table 3 1. 34 
thickness per sheet .................. 31-32 

Planimeter ............................................. 89-92 
hatchet .................................................. 90 

polar ......................................................... 89 
Plant growth measurements ...... 52-54 
Polar planimeter .............................. 88. 89 
Prytz. Captain Andreas ........................ 89 

Rayleigh. Lord .......................................... 21 
Random numbers ........................ 110-112 

table ......................................................... 111 
Range ................................................ 29-30, 63 
Rare gases ................................................ 21 
Room temperature ................................. 16 

Sampling ................................. 14, 104-105 
............. " ......................................... 34 
.................................................. 30, 35 

Sewing thread experiment ... 113-119 

Standard deviation .................. 58, 61, 63 
form for calculating ........................ 66 

Standard error ...................... 
Steel bar measurements 
Student's t ............................................. 68-74 

Testing apparatus ..................... 114-1 17 
Testing laboratory ................................. 88 
Thermometer .............................. 10, 16, 24 

Transit ................................................ 

Values ............................................................ 32 
Vernier, Pierre .......................................... 81 
Vernier caliper .. 80 
Vernier scale ............................................. 81 

Water ............................................................... 79 
viscosity measurement ............... 79 

Weighing machine experiment 
96-102 

Weight measurement ............ 10-1 1, 17 

127 





NIST Special Publication 672, Experimentation and Measurement By W.J.Youden was reprinted last in May of 1997 from the U.S. 
Department of Commerce's National Institute of Standards and Technology. From the Foreword, written by H.H. Ku, "Experimentation 
and Measurement was written by Dr. W.J. Youden, Applied Mathematics Division, National Bureau of Standards in 1961, and 
appeared as a VISTAS of SCIENCE book in 1962...The VISTAS of SCIENCE version has been out-of-print for a number of years.  
The original book has been reproduced in it entirety to preserve its authenticity, and to recognize the contributions of the National 
Science Teachers' Association." 
 
The following is an excerpt from the biography of William John Youden, written by JJ O'Connor and EF Robertson, maintained on-
line by the University of St. Andrews Scotland, School of Mathematics and  
Statistics at URL 
http://www-gap.dcs.st-and.ac.uk/~history/References/Youden.html 
 
In 1931 Youden published his first paper on statistical methods. It marks [1]:- 
 
... the beginning of Youden's "missionary" efforts to acquaint research workers with statistical methods of value in their work. 
 
In his work during the 1930s on the statistical design of experiments, Youden introduced new methods based on balanced incomplete 
block designs. Youden made Fisher aware of these methods in 1936 and Fisher called the new experiment designs 'Youden squares' in 
his work on Statistical tables published jointly with Yates in 1938. Youden published a paper in 1937 Use of incomplete block 
replications in estimating tobacco mosaic virus which used his new rectangular experimental arrangements. He introduced further 
designs in a paper which appeared in 1940. 
 
In [5] Preece surveys Youden squares. His own summary of what is contained in this paper follows:- 
 

Youden squares were introduced in the 1930s as designs for experimentation on plants. We discuss their mathematical 
properties and their enumeration. Cyclic and partly cyclic methods of generating Youden squares are given particular attention. Some 
balanced Graeco-Latin designs that incorporate Youden squares are discussed; these have statistical interest because of their potential 
for use as designs for orchard experiments, and some have mathematical interest because of their role in the construction of Graeco-
Latin squares. 
 

Youden squares played an important role in World War II being used for experimental trials in engineering and other scientific 
projects. During World War II Youden worked for the military as a operations analyst. He spent some time in Britain undertaking war 
work, mainly investigating the factors which control the accuracy of bombing. He also spent time in India, China, and the Marianas 
carrying out similar work. 
 
In 1948 Youden, by now recognized as a leading statistician as well as a chemist, joined the National Bureau of Standards. In that 
position he again was deeply involved in devising experimental arrangements for a wide range of different tasks from spectral analysis 
to thermometer and other instrument calibration. 
 
References: 
1.Biography in Dictionary of Scientific Biography (New York 1970-1990). 
 
Books: 
2.H H Ku, W J Youden, Statistics : Articles From the International  
Encyclopedia of the Social Sciences (New York, 1977). 
 
Articles: 
3.C Eisenhart, Churchill and R J Rosenblatt, W J Youden, 1900-1971,  
Ann. Math. Statist. 43 (1972), 1035-1040. 
 
4.Journal of Quality Control 4 (1972) - Issue dedicated to Youden. 
5.D A Preece, Fifty years of Youden squares: a review, Bull. Inst.  
Math. Appl. 26 (4) (1990), 65-75. 
 
 
Tributes and honors to Dr. Youden's work continue as the W.J. Youden Memorial address is made each year at the Chemical and 
Process Industries Division Conference of the American Society for Quality meeting and the American Statistical Association bestows 
the annual W.J. Youden Award in Interlaboratory Testing. 
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